IEA Bioenergy

Integrated Bioenergy Hybrids Flexible Renewable Energy Solutions

Elina Hakkarainen, VTT Technical Research Centre of Finland

Co-authors: Ilkka Hannula, Andreas Ortwein, Ernst Höftberger, Kai Sipilä, Kyriakos Maniatis

Content

- IEA Bioenergy RES Hybrids project
- Background
- Why integrated bioenergy hybrids?
- Case examples of different hybrid applications
- Key actions in the next five years

Sources: Savosolar & Versowood

14/09/2017

Bioenergy RES Hybrids project

- IEA Bioenergy Task 41 Special project (2016)
- The project surveyed the status of bioenergy utilisation as a flexible element in hybrid processes
 - Case study countries: Finland, Germany and Austria
 - Heating and cooling, power and transport sectors

http://task41project7.ieabioenergy.com/

Variable renewable energy increases fast

- Solar and wind energy are increasingly cost competitive with fossil generation
- In OECD countries, electricity demand is stagnating
- Additional VRE puts pressure on existing base load capacity

Key question: How to maintain reliable energy supply while meeting our emission targets?

Significant growth for solar PV and wind

Solar PV Global Capacity and Annual Additions, 2005–2015

- PV capacity addition in EU 7.5 GW in 2015
- Growth leaders in EU:
 UK, Germany and France
- Solar thermal: Market growth in Denmark +55% in 2015

Wind Power Global Capacity and Annual Additions, 2005–2015

- Wind leading source of new power generation capacity in EU (44%)
- Leading countries in capacity/capita: Denmark, Sweden, Germany, Ireland and Spain

14/09/2017

Source: REN21, 2016

Power plant investments in EU 2000-2015

14/09/2017 Source: SolarPower Europe, 2016

- Clear demand for low-carbon technologies that are able to balance temporal differences between energy supply and demand
- Over the next 25 years, \$11.4tn (€10.2tn) will be invested in power generation (Bloomberg, 2016)

Bioenergy already plays a key role in the European energy system

Heating and cooling represents about half of EU's annual energy consumption

Energy sources in heating in the EU in 2014

Bioenergy has already a huge role

8

We still use a lot of fossil fuels for heating

14/09/2017 Source: Eurostat 2016

What kind of flexible resources do we need?

There are five types of flexible resources

Definition of integrated bioenergy hybrid

 "Energy conversion process that has at least two energy inputs, one of which is bioenergy"

Only renewable energy inputs

What if we combine different energy sources?

 Hybrid system is designed to use different energy sources to their fullest potential

"The whole is greater than the sum of its parts"*

Classification

- 1. Domestic applications
- 2. Farm-scale applications
- 3. Industrial applications
- 4. Utility and district applications
- 5. Biomass based storage solutions

Domestic hybrid heating systems

A standard technology

- Hybrids mainly found in the heating sector
- Flexible and robust integration
- Biomass and ground-source heat alternative base load producers
- In Germany, 60% of all pellet boilers and stoves combined with solar energy
- Investments fully market driven

Source: EkoLämmöx, ÖkoFen Pelletsheizung

- → The role of biomass depends on the household's heating behaviour
- → Largest potential outside the district heating network

District heating and cooling networks

Trigeneration of heat, power and cooling with high efficiency

- 90% of DH produced by CHP
 - Co-combustion of wood pellets and coal
 - Distributed heat generation based on biomass
 - Biogas product for DH
- 7% of DH produced by heat pumps station
 - Waste heat utilisation
 - Passive solar thermal

Source: HELEN, Helsinki, Finland

- → RES potential in district networks is high District cooling further increases it
- → Biomass a fast way to increase RES share
- → Heat pumps improve the system efficiency and allow balancing in the power sector,

District heating: Biomass-solar hybrid Løgumkloster hybrid plant in Denmark

- Typical combination:
 - Wood pellet/wood chip boiler
 - Solar thermal
 - Heat pump
 - Heat storage
 - Natural gas
- Annual solar fraction typically ~25%

- → Biomass plant can be shut down for summer periods
- → Heat pumps allow efficient utilisation of solar thermal energy
- → High system efficiency through optimised operation and control of different sources

Solar district heating in Denmark

Regional heating: Biomass-solar hybrid

Solution in Gleisdorf, Austria

- An office building and several low-energy houses
- Heat supply
 - ~50% solar heat
 - ~50% wood pellet boiler
 - 14 m³ heat storage tank
- Two temperature levels
 - Space heating: 40 °C
 - Domestic hot water: 65 °C

- → Fully renewable heat with cost benefit compared to household scale systems
- → Biomass balances the system on multi-day level
- → Several renewable district heating demonstrations in Austria and Germany

District heating: Biomass-solar hybrid Pilot in Finland

- First biomass-solar hybrid pilot replacing fossil based DH unit in Finland
 - Wood pellet boiler, 500 kW_{th}
 - Solar thermal collectors, 8 kW, 12 m²
 - Electric heater, 70 kW
 - No heat storage
- Solar collectors to preheat the return water
 - → High solar thermal efficiency
 - Annual solar production 3–4 MWh, focused on summer period

Source: Kari Vesterinen, Savon Voima Oyj

- → Solar thermal replaces use of wood pellets Biomass storability is utilised
- → No fossil fuels needed during the summer period

Industrial applications

Local biogas utilisation

- Heating and cooling sector
 - Bioenergy
 - Ground-source heat
 - Waste heat recovery
 - Solar heat and electricity
- Großfurtner's slaughterhouse
 - ~80% of the heat from biogas CHP
 - Rest by ground-source heat

Source: IEA Bioenergy Task 37

- → Key drivers security of supply and costs Cooling demand increases
- → Biogas for heating, power and mobility
- → New local networks and businesses

Industrial applications

Virtual power plants and Power-to-Gas concepts

- Biogas and biomethane + wind power close to the market in Germany
- Surplus wind power into electrolytic hydrogen
 - Flexible storage option
 - Heat and power
 - Mobility
- Chemical storage of variable renewable energy (VRE) into biofuels

Enertrag virtual power plant in Prenzlau, Germany

- → Resource efficiency in biomass use and flexible storage solution
- → Ancillary services for power grid

Biomass based storage solutions Solar enhanced drying of solid biomass

- Decentralised biomass drying at biomass production sites can create new business opportunities
- VTT's pilot wood chip dryer:
 - Research on efficiency, controllability and economics

- → Low-cost and long-term (seasonal) storage application for solar energy
- → Good quality biomass for thermo-chemical conversion processes
- → Feasible logistic chain with enhanced efficiency

Summary of technology developments Status and future trends

	Domestic scale	Utility scale and districts	Industrial scale	Farm-scale
On market/ Implemented	 Biomass + solar thermal Biomass + ground-source heat Biomass + waste heat recovery Biomass + electric heating Biomass + DH Biomass + PV 	 Biomass + waste heat recovery Biomass + passive solar energy 	 Biomass + ground-source heat Biomass + waste heat recovery Biomass + PV 	 Biomass + ground-source heat Biomass + PV Biomass + wind Biogas production
Ongoing developments	 Standardised interfaces Optimised control algorithms Bidirectional DH 	 Biomass + solar thermal Biomass + geothermal Waste heat utilization from new sources Low-temperature grids Prosumer integration Hydrogen enhanced biofuels 	 Biogas economy Hydrogen enhanced biofuels Virtual power plants Biomass + solar thermal 	 Biomass + solar thermal Biomass drying Liquid biofuel production

14/09/2017

More details: Country reports

Key actions in the next five years

#1

An online "knowledge library"

#5

Improving flexibility of

bioenergy technologies

#3

Standardisation of interfaces

#2

Methods to assess the economic feasibility of hybrids

#6

Developing novel integrated bioenergy hybrid concepts

#4

Developing optimised control systems

14/09/2017

Thank you for your attention!

IT DRIES THE WASHING USING THE VERY

LATEST TECHNOLOGY - A COMBINATION

OF SOLAR AND WIND POWER

R^G Elina Hakkarainen

