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“MaREIl: Unlocking the potential of our marine and energy resources through
the power of research and innovation”

 Marine and renewable energy research, development & innovation hub
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* SFl research centre coordinated by the Environmental Research
Institute at University College Cork with partners across 6 academic

institutions

* Headquartered in the ERI Beaufort Building on the IMERC campus in
Cork Harbour which also houses the Lir National Ocean Test Facility
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We combine the expertise of a wide range of research groups and industry partners
with the shared mission of solving the main scientific, technical and socio-economic

challenges across the marine and energy spaces.
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ER’P Environmental Research Institute (ERI) %UCC

Colaiste na hOllscoile Corcaigh
ENVIRONMENTAL RESEARCH INSTITUTE

—— Research enabling a low carbon and
resource efficient future

The ERI is UCC’s flagship Institute for environmental, marine and energy research
bringing research teams from across science, engineering, business and humanities
to address global environmental challenges in a multi-disciplinary approach

(300 researchers from 10 schools and 3 centres \ %

Marine Renewable Energy Ireland (MaREl)
Aquaculture and Fisheries Development Centre (AFDC)
Centre for Research on Atmospheric Chemistry (CRAC)

* 150 active research projects with €44 M of funding

* 7000 m? of offices, laboratories and workshops in
\two dedicated research buildings on UCC campus/
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Member countries participating in Task 37
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Technical Reports Triennium 2013 - 2015

A perspective on algal biogas,

Nutrient recovery by biogas digestate processing,

A perspective on the potential role of biogas in smart energy grids,
Pretreatment of feedstock for enhanced biogas production,
Process monitoring in biogas plants

Source separation of municipal solid waste

Sustainable biogas production in municipal wastewater treatment
plants

Exploring the viability of small scale anaerobic digesters in livestock
farming
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Technical Reports Triennium 2016 - 2018

=

Food waste digestion systems.

International approaches to sustainable anaerobic
digestion

Grid injection and greening of the gas grid

The role of biogas in the circular economy

Validity of BMP results

Methane emissions

Biomethane as a transport fuel

Sustainable Bioenergy Chains (Collaboration with Task 40)
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Development
°lan 2015

assessing future demand and supply position

2015 2016 2017 2018 2019 020 2021 2022 2023 2024
Annual RNG Capacity (GWh) 20 170 400 960 1440 2280 2640 3120 4350 5980
% of Demand 0.04% 0.34% 0.8% 2% 3% 5% 5% 6% 9% 12%

Major demand for Green Gas is from Foreign Direct Investment (Multi-nationals)

“MaREl

Centre for Marine and
Renewable Energy
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Green Gas

6 European gas grids
have committed to

100% green gas in the
gas grid by 2050




Murphy, J.D (2015) A bioenergy model for Ireland: greening the gas grid. Engineers
Journal available In:

http://www.engineersjournal.ie/bioenergy-model-ireland-greening-gas-qgrid/

Table 1: Simplified analysis of renewable energy targets

Energy Vector Percentage of final | Renewable Contribution to
energy Energy Target renewable energy
consumption target

Electricity 20% 40% 8%

Thermal Energy 40% 12% 4.8%

Transport energy | 40% 10% 4%

Total 100% 16%
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Why should agricultural sector
do anything about biofuels?
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Ireland’s Energy Low Carbon Pathway
UCC Energy Policy and Modelling Group
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But 80% CO2 reduction = 50% GHG reduction
UCC Energy Policy and Modelling Group
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German approach to carbon capture in agriculture
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Initiation of Industry

Green Gas from residues, slurries
and grass
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Applied Energy 175 (2016) 229-239

Contents lists available at ScienceDirect

Applied Energy

journal homepage: www.elsevier.com/locate/apenergy

Quantification and location of a renewable gas industry based @mssum
on digestion of wastes in Ireland

Richard O'Shea *", Ian Kilgallon , David Wall ***, Jerry D. Murphy *"

“ MaREl Centre, Environmental Research Institute, University College Cork, Cork, Ireland
®School of Engineering, University College Cork, Cork, Ireland
“Gas Networlks Ireland, Gasworks Road, Cork, Ireland

HIGHLIGHTS

« A spatial assessment of the biomethane resource in Ireland was undertaken.

« Biomethane from residues can supply 26.5% of industrial gas use in Ireland.

« Biomethane from residues can supply 7% of energy in transport in Ireland.

« The resource of biomethane from cattle slurry is 76% of the total resource.

« The resource is equivalent to woody energy crops from 17% of arable land in Ireland.
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Available at www.sciencedirect.com ; BIOMASS &
BIOENERGY
— e e

“e.¢ ScienceDirect

http://www.elsevier.com/locate/biombioe .

An argument for using biomethane generated
from grass as a biofuel in Ireland

Jerry D. Murphy®®*, Niamh M. Power®

“Department of Civil and Environmental Engineering, University College Cork, Cork, Ireland
PEnvironmental Research Institute, University College Cork, Cork, Ireland
“Department of Civil, Structural and Environmental Engineering, Cork Institute of Technology, Cork, Ireland

Grass is a perennial

Grass lands sequester carbon

Grass can be outside food fuel debate
Grass is ligno-cellulosic?

Grass is a second generation gaseous biofuel which can be used in NGV vehicles
Natural Gas Grid can be distribution system.
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Grass to transport fuel

harvest - weigh bridge
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Renewable and Sustainable Energy Reviews 13 (2009) 2349-2360

Contents lists available at ScienceDirect

Renewable and Sustainable Energy Reviews

El SEVIER journal homepage: www.elsevier.com/locate/rser

What is the energy balance of grass biomethane in Ireland and other temperate
northern European climates?

Beatrice M. Smyth *®, Jerry D. Murphy *P*, Catherine M. O’Brien *?

* Department of Civil and Environmental Engineering. University College Cork, Cork, Ireland
® Environmental Research Institute, University College Cork, Cork Ireland




Stage Energy Process Product
Crop Fertilizer/herbici- Plantation, cultivation + Grass
production de/seed/lime harvesting
production ¥
Diesel Transport
4
Storage Silage
\ 4
Biogas Electricity Macerating
production
\ 4
Heat + Anaerobic digestion Biogas
clectricity
\ 4
Cleaning + Biomethane
Biomethane upgrading
production
\ 4
Electricity Compression Compressed
biomethane
\ 4
Distribution +
pumping
h 4
Digestate use Diesel ¥ Transport Digestate




Pathways for use of biogas

Feedstock
e.g. grass silage

h 4

Biogas

On-site heat

h 4

Biomethane

Natural
gas

BioCNG
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Net energy yield per hectare of crops

Maize| Grass
Methane yield m3 . ha! 5,748 | 4,303
GJ . ha 217 163
Process energy derr:]ae}?d for digestion GJ. 33 24
Energy requirement in cropping GJ. ha™' 17 17
Total energy requirement GJ. ha' 50 41
Net energy yield GJ.ha' 167 122
Output (GJ.ha)
Input (tot. Energy) e =il

IEA Bioenergy



Modeling and Analysis dBlOf I

Bilofuels Bioproducts & Blcrethg

Is grass biomethane a
sustainable transport biofuel?

Nicholas E. Korres, Anoop Singh, Abdul-Sattar Nizami and Jerry D. Murphy,” Biofuels Research Group,
Environment Research Institute, University College Cork, Ireland

Received December 15, 2009; revised version received February 8, 2010; accepted February 11, 2010
Published online in Wiley InterScience (www.interscience.wiley.com); DOI: 10.1002/bbb.228;

Biofuels, Bioprod, Bioref. 4: 310-325 (2010)
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Figure 3. Percent CO, savings over fossil diesel under a range of C sequestration and various scenarios in
biomethane production (The scenarios are cumulative left to right, for example improving heat includes for
elect & wind and base case scenario).

Table 10. Typical values for greenhouse gas

savings for biofuel systems from the renewable
energy directive*

Biofuel system % savings in greenhouse gas
compared to fuel replaced

Wheat ethanol 32%

Rapeseed biodiesel 45%

Sunflower biodiesel 58%

Sugarbeet ethanol 61%

Palm oil biodiesel 62%

Biogas from MSW 80%
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Modeling and Analysis @B'Of

Biofuels Bioproducts & Bloreﬁnmg

Can grass biomethane be an
economically viable biofuel for
the farmer and the consumer?

Beatrice M. Smyth, Environmental Research Institute (ERI), University College Cork (UCC), Ireland
Henry Smyth, Bord Gais Eireann, Cork, Ireland
Jerry D. Murphy, ERI, UCC, Ireland
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Economic viability of biogas from energy crops

Table 7. Break even of compressed biomethane from grass silage as a vehicle fuel.
Reduced operating costs and

Base case (€c kWh)? depreciation (€c kWh™)°
50%G  30%G NG 50%G  30%G ( NG )
Break-even price of biomethane injected to grid 10.0 10.8 121 6.7 7.5 \58/
Cost of compression to 250 bar + filling station® 1.1 E 5 | 11 1.1 1.1 1.1
Break-even price of compressed biomethane 111 1.9 13.2 7.8 8.6 9.9
- including 21% VAT 13.4 14.4 16.0 94 104 12.0
- including 21% VAT (€ m™) 1.37 1.47 1.63 0.96 1.06 1.22

#Excludes farming subsidy.
®Includes farming subsidy (€461 ha™).
°Estimated from values in the literature’® and discussions with industry.

1 m3 CH, 10 kWh = 1L diesel equiv
9.9 ¢/ kWh = 99 ¢/ m3 CH,



il

Biofuel Obligation Certificates (BOCs) and
REHEAT

Natural gas is sold at ca. 29c/L of diesel equivalent 29 c/L
Required subsidy for renewable heat 70 c/L
2 BOC'’s are available if the fuel is 2"9 generation or residue

1 BOC is valued as the difference in price between 1L of
imported diesel and 1L of biodiesel. Trades between 15 - 35 c/I.



Renewable and Sustainable Energy Reviews 15 (2011) 4537-4547

Contents lists available at SciVerse ScienceDirect

Renewable and Sustainable Energy Reviews

journal homepage: www.elsevier.com/locate/rser

Assessing the cost of biofuel production with increasing penetration of the
transport fuel market: A case study of gaseous biomethane in Ireland

James Browne2?, Abdul-Sattar Nizami2:P, T Thamsiriroj2:, Jerry D. Murphy.b:*

 Department of Civil and Environmental Engineering, University College Cork, Cork, Ireland
b Biofuels Research Group, Environmental Research Institute, University College Cork, Cork, Ireland

0 2 4 6 8 10 12
RES-T (%)
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Co-digestion of grass and slurry

Bioresource Technology 149 (2013) 425-431

x

BIORESOURCE
TECHNOLOGY

Contents lists available at ScienceDirect

Bioresource Technology

SEVIER journal homepage: www.elsevier.com/locate/biortech

The potential for biomethane from grass and slurry to satisfy renewable @Cmsmﬂ(
energy targets

David M. Wall *>€, Padraig O'Kiely €, Jerry D. Murphy *>*

* Bioenergy and Biofuels Research Group, Environmental Research Institute, University College Cork, Cork, Ireland
b School of Engineering, University College Cork, Cork, Ireland
© Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co. Meath, Ireland
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Biomethane Potential Assays

Grass %VS Slurry %VS
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Scale of Grass Biogas industry

Table 5
Potential mixes of grass silage and slurry with associated renewable energy production.

Grass: Slurry VS basis Energy in biomethane (PJa ') % of expected energy in transport 2020 (%) RES-T allowing for double credit (%)
Scenario 1 (equivalent to 0.4% of grass land)

100:0 2.20 1.17 234
80:20 237 1.26 252
60:40 2.94 1.56 3.13
50:50 3.39 1.80 361
40:60 3.75 1049 3989
i 3! 1.1 % Grassland in Ireland e
Scenario 2 (equivalent to 1.1% of grass land

100:0 % 351 702
80:20 i 3.78 756
60:40 8.82 4.69 938

| 50:50 10.16 5.40 1081 |

0100 3594 210 4.19
Scenario 3 (eguivalent to 2.8% of grass land)

100:0 16.07 8.55 17.10
80:20 17.32 9.21 18.43
Scenario 4 (equivalent to 8.3% of grass lmd)

100:0 48.21 25.64 51.29

170 digesters treating 10,000 t a' of grass and 40,000 t a-' of dairy slurry
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Bioresource Technology 173 (2014) 422-428

Contents lists available at ScienceDirect

BIORESOURCE

Bioresource Technology

journal homepage: www.elsevier.com/locate/biortech

Optimisation of digester performance with increasing organic loading @msmk
rate for mono- and co-digestion of grass silage and dairy slurry

David M. Wall *”9, Eoin Allen *", Barbara Straccialini ¢, Padraig O’Kiely ¢, Jerry D. Murphy *°*

Bioresource Technology 172 (2014) 349-355

BIORESOURCE
TECHNOLOGY

Contents lists available at ScienceDirect

Bioresource Technology

SEVIER journal homepage: www.elsevier.com/locate/biortech

The effect of trace element addition to mono-digestion of grass silage @CmssMark
at high organic loading rates

David M. Wall *¢ Eoin Allen ®°. Barbara Straccialini €. Padraie O'Kielv ¢ lerrv D. Murphv *2*
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Contlnuous digestion of grass and slurry

Higher Grass Silage Input
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Increased gas production with increased grass
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Reduction in yield of mono-digestion at high OLR

450

400 +— % = S : o __}_ 12%
350 | : : | : | : | : : decrease
' | I | | | in SMY
300 - | | I | |
> | | | | ! !
> 250 - | | | | |
o | | | | ! !
= 200 | | | | |
R | | | | |
— I I I I I
| | | | |
100 : : I I : | : I
50 | :200LR: | 250LR | 300LR | 3501R |4, U()LR|
0 4 ;HR‘I' 37 d | HR't.K 20d l HR‘l:” 25d I HRT.’.’;I d lHRI 19 dl
0 ————iy —_ 1 l L
0 5 10 15 20 25 30 35 40 45 50 55 60 65
Weeks
—a— 100 % Grass — - -BMP

Fig. 1. Specific methane yield for R6 ( mono-digestion of grass).
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Trace element analysis
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A perspective on the potential role
of biogas in smart energy grids

Tobizs FERSSON, Jemry MURPHY,
Anna-Karin JANNASCH. Ecin AHERN,
Jan LEBETRAI, Marcus TROMMLER,

Jefarson TOYAMA
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Demand Driven Biogas

Biogas Process
il —

power X 2
g [«
£ 8
= > — Y a
CHP s T
: heat — -
biogas upgrading
and grid injection
lfeedma 3 2 storago of ‘ : 3 additional rapacntv ! i 3 bio-methane Flexibilisation
management : mtermeduates ‘ : —storage, ICT, CHP | “.oooiinninansiges Approaches

Figure é: Approaches for biogas-based demand driven power production (Szarka et al, 2013)
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Second stage of Industry

Green Gas from gasification of

TRL 4,5 woody crops
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Thermal production CO+3H, = CH,+H,0  Gas upgrading
CO,+4H,=CH, +2H,0 Removal of CO2
2CO+2H,= CH, + CO,

of Biomethane

Char ; CH. natural
combustion -0} Syn gas 3 gas network

Gasification cooling &
cleaning

[steam)

electricity grid

Typically ca. 65% energy efficiency



Applied Energy 108 (2013) 158-167

Contents lists available at SciVerse ScienceDirect

Applied Energy

LL\L\ IER journal homepage: www.elsevier.com/locate/apenergy

What is the realistic potential for biomethane produced through
gasification of indigenous Willow or imported wood chip to meet
renewable energy heat targets?

Cathal Gallagher?, Jerry D. Murphy ><*

Plant Size MW 50
Land area (ha) 6800
Number of plants required 11

As a % Energy in Transport 5.5%

As a % of agricultural land 1.7%

Legend
& mNoda

o Fon

Gas Nemwork

Y 4Dkm Mode Catchment Areas




Third stage of Industry

Green Gas from seaweed

“MaREl

Centre for Marine and
Renewable Energy

" TRL 7-9

Sustainable A ¢

Mobility

Renewable
Products

TRL6

g~ ~Scale biomass T




s IEA Bioenergy Task 37

Waste Management 33 (2013) 2425-2433 & G, % _"_

\

4 s

Potentially Eutrophic )

) Intermediate ™

@ Unpolited 2

2 Estuarine (Transitional) Waters & o
Coastal Waters =

Contents lists available at SciVerse ScienceDirect

Waste Management s 3 .
journal homepage: www.elsevier.com/locate/wasman w 7 &
prJ & e
The potential of algae blooms to produce renewable gaseous fuel @CmssMark By vl
E. Allen? J. Browne? S. Hynes?, J.D. Murphy *>* ® “”z
2 Environmental Research Institute, University College Cork, Cork, Ireland @ ~

Asgudean estuary

® Department of Civil and Environmental Engineering, University College Cork, Cork, Ireland

Argideen Estuary

K o 0P~ 1o G ALy
[ | 4 3 o {

oas03 o8 09 12 [Metdo = EQR2004 EQR2004| Previsiona WFD cossfcatin
1— i — —C | TOM| Y, el 030 037 for he Argdeen Estary using
Totl atected area (29) 037 039, \‘; opporunsic sigas growhs
I 4o Cover 208 Avg bomass AlH (gev ) 0 039,
Asol Cover 2004 Avg bomass attected area (gm ) an a2t epc
% entraineg " n «
Final Score 0.28 034

WFD Classilication —
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Energy xxx (2015) 1-9

Contents lists available at ScienceDirect

Energy

FLSEVIER journal homepage: www.elsevier.com/locate/energy i

What is the gross energy yield of third generation gaseous biofuel
sourced from seaweed?

Eoin Allen ¢, David M. Wall ¢, Christiane Herrmann ?, Ao Xia ¢, Jerry D. Murphy >~

2 Environmental Research Institute, University College Cork, Lee Road, Cork, Ireland
b School of Engineering, University College Cork, Cork, Ireland

45
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Specific methane yields of Seaweed

Substrate BMP yield Theoretical Theoretical Biodegradability Specific

(L CH; kg VS™) composition of  yield (L CH, index yield (m?

biogas (CH, %) kg VS™) CH, t™* wwt) A. Nodosum

A. nodosum 166.3“1 20 53 488 0.34 32.3
H. elongate 260.9f1 2.05 36 334 0.78 21.1
L. digitata 218.0% + 4.14 53 479 0.46 22.5
F. spiralis 235.2%+ 9.43 55 540 0.44 32.7
F. serratus 101.7° +9.37 54 532 0.19 13.5
F. vesiclosus 126.3°* + 11.38 37 249 0.51 19.4
S. polyschides 263.3"+4.23 48 386 0.68 34.5 S. Polyschide
S. latissima 341.7% + 36.40 50 422 0.81 34.5
A. esculenta 226.0%f + 5.66 53 474 0.48 26.9
U. lactuca 190.1° + 3.10 48 465 0.41 20.9
Cellulose 357.4% + 15.20 - 414 0.86 -

=

Different superscript letters ®Indicate significant differences between BMP yield means of substrates (P < 0.05, adjustment = SIMULATE). wwt=

S. latissima

wet weight.

Table 2. Biomethane production for seaweed using results of BMP analysis and theoretical analysis.
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Seasonal Variation in biomethane yield from Laminaria Digitata
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Seasonal Variation in A. nodosum
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Seaweed Biofuel Dertved from Integrated Multi-trophic

Aquaculture

Amita Jacob, Ao Xia, Daryl Gunning, Gavin Burnell, and Jerry D. Murphy
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Figure 1. Conceptual design of 405 ha (1,000 acre) ocean food and energy farm
unit. (Leese 1976) Source: David Chynoweth.
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Higher methane yields after ensiling
can compensate for silage
fermentation losses.

No losses in methane yield occurred
during 90 day storage for 4 of 5
species.
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Figure 8: Open cultivation systems for cultivation of microalgae; left: Race way ponds at pilot-scale (© Elad Zohar, Erber Future Business GmbH);
night: cascade system (= thin film system) (© Jiri Kopecky, Institute of Microbiology, Trebon)
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Curtailment and storage of variable renewable electricity
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2 MW Power-to-Gas unit (Falkenhagen, Germany).
Hydrogen is injected into the grid without methanation

Electrolysis: Electricity converted to H2  at 70- 90% n

Windmill at a biogas facility. (Source: Xergi)

Methanation: 4H, + CO, = CH, + 2H,0 at 80- 90% n

Overall; 55-80% n

University Collage Cork, Ireland
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Resource of Power to Gas

Table 2
Total potential of renewable gas in Ireland as a renewable transport fuel.

Agricultural slurries Slaughter waste OFMSW Grass Total
RES-T from anaerobic digestion of selected substrates
Feedstock (Mt/a)? 2.79 0.21 0.22 416 7.38
CH, yield (m3/t)? 17.8 86 68 107.6 71.9
CH, from AD (Mm3/a)? 49.76 18.08 14.98 447.59 530.41
Practical resource from AD (PJ/a)" 1.88 0.68 0.57 16.07 19.20
Percentage of energy in transport (%)° 1.00 0.36 0.30 8.55 10.21
RES-T from AD (%) 2.00 0.72 0.60 17.10 20.42
RES-T from biological Power to Gas
% CO5 in biogas 45 45 35 45 —
CO, from AD (MmZ/a) 40.71 14.79 8.07 366.21 429.78
H, required (Mm3/a)° 162.85 59.16 32.26 1464.84 1719.13
Electricity required to provide H, (PJ/a)" 2.63 0.95 0.52 23.63 27.73
Energy from Power to Gas (PJ/a)® 1.58 0.57 0.31 14.18 16.64
CH, from Power to Gas (Mm3/a) 41.72 15.16 8.27 375.32 440.47
Percentage of energy in transport (%) 0.84 0.30 0.17 7.54 8.85
RES-T from Power to Gas (%)" 1.68 0.6 0.34 15.08 17.7
RES-T from renewable gas
RES-T from AD and P2G (%) 3.68 1.32 0.94 32.18 38.12

2 From Singh et al. [16] and Wall et al. [17].
b Energy value of CH4 taken as 37.8 MJ/m3.

c
d

€ H, required at 4 times the volume of CO,.

 Energy value of H, taken as 12 MJ/m3. Electricity converted to H, at 75% efficiency.

Energy in transport in 2020 expected as 188 PJ in Republic of Ireland.
Residues and grasses are allowed a weighting of 2 in Renewable Energy Directive.

& QOverall electricity to H; efficiency of 60% (80% * 75%).

" Power to Gas allowed a weighting of 2 in RED.
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Gaseous biofuel from non-biological origin
H,: energy Density 12.1 MJ/m 3 : CH,: Energy density 37.6 MJ/m 3
Sabatier Equation: 4H, + CO2 CH4 + 2H,0
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Mix biogas (50% CH4 and 50% CO2) with H2; generate double the CH4
(1 mol CO2 generates 1 mol CH4).
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Integrated system approach: marine energy, storage and fuels
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