IEA Bioenergy

Biomass Torrefaction

Technology Status and Commercialisation, Applications for Torrefied Biomass and its Role in Logistics and Trade

Webinar, 27 Oct 2016

Jaap Koppejan, Managing Director, Procede Biomass BV

Marcel Cremers, Senior Consultant, DNV GL

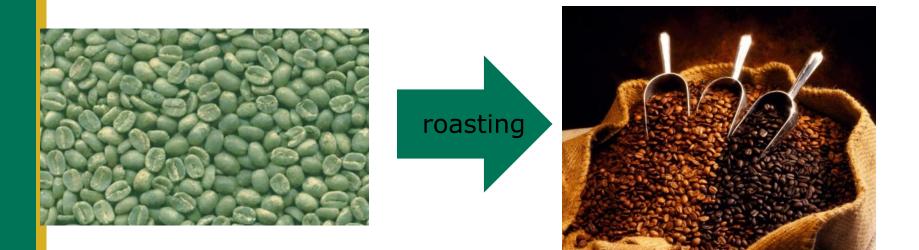

Michael Wild, President, IBTC

Martin Junginger, Professor Biobased Economy, Utrecht University

IEA Bioenergy, also known as the Implementing Agreement for a Programme of Research, Development and Demonstration on Bioenergy, functions within a Framework created by the International Energy Agency (IEA). Views, findings and publications of IEA Bioenergy do not necessarily represent the views or policies of the IEA Secretariat or of its individual Member countries.

Webinar based on two recent reports by tasks 32 and 40

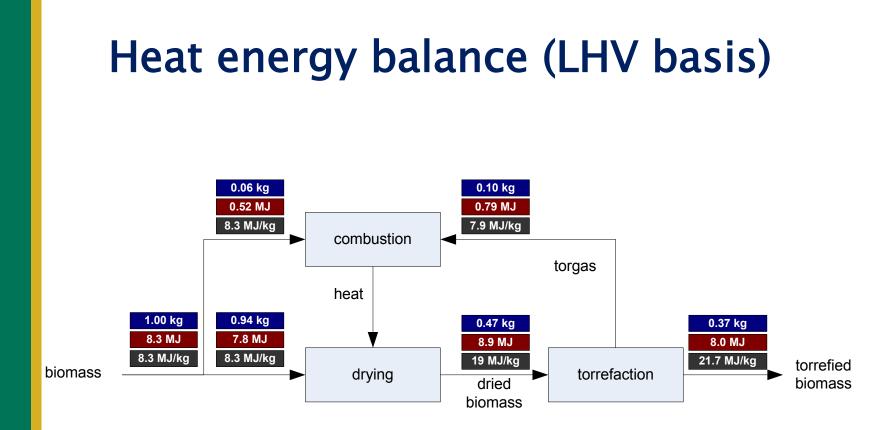
IEA Bioenergy


Presenters today

10 min	Introduction to torrefaction, Jaap Koppejan, Managing Director, Procede Biomass BV and Task leader IEA Bioenergy Task 32 (Biomass Combustion and Cofiring)
15 min	Status of commercialisation, Marcel Cremers, Senior Consultant, DNV-GL
15 min	Possible implications on bioenergy trade, Michael Wild, President, International Biomass Torrefaction Council
20 min	Q&A, Martin Junginger , Professor Biobased Economy, Utrecht University and Task leader, IEA Bioenergy Task 40 (Biomass Trade)

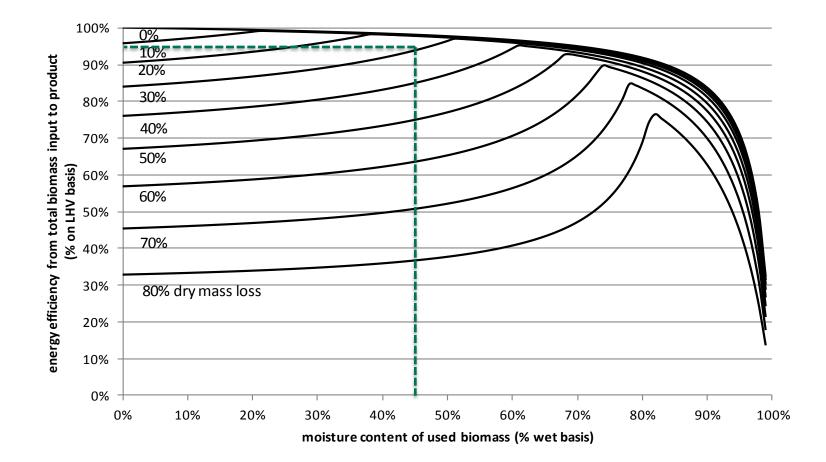
IEA Bioenergy

Torrefaction is like roasting coffee beans....


- Heating biomass to 250-300 °C in absence of oxygen
- Drying + removal of part of the volatiles

Claims made for Torrefaction

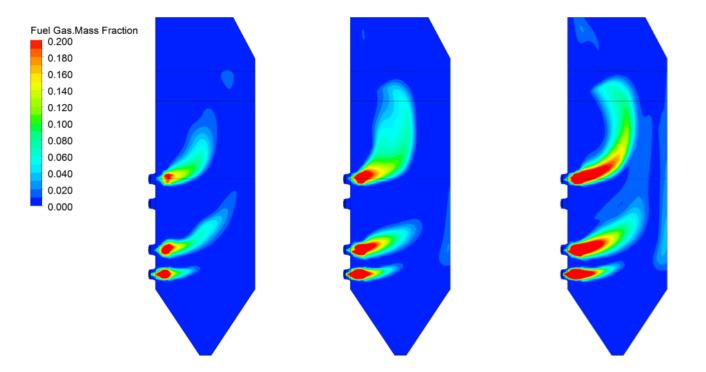
- 1. Volumetric energy densification brings significant cost reductions in transport and handling
- 2. Broader feedstock basis geographically + types of raw material
- 3. Limited or no biodegradation of product when stored
- 4. Large variety of applications
- 5. Reduces CAPEX&OPEX at end user Immediate use in existing coal fired plants –grindability, (water resistance?)....
- 6. Combustion and gasification behaviour more compatible to coal than raw biomass, high cofiring shares possible
- 7. Can be made to measure to clients requirements
- 8. Helps developing the market towards commoditisation



Assumptions: fresh clean wood (0,5% ash content, 50% moisture content) as raw material and a dryer requiring 2.9 MJ per kg of water evaporated

IEA Bioenergy

Thermal energy efficiency can easily be over 90% for 30% dry mass loss


www.ieabioenergy.com

IEA Bioenergy

Technical challenges remaining

- Water resistance not as good as wanted
- Pelletisation is difficult for material with high torrefaction degree, both high durability and good grindability is difficult to achieve
- Several process owners are unable to produce adequate product at constant quality
- Torrefied wood pellets can generate larger amounts of explosive fine dust than wood dust
- Ash content increases and alkali concentration can go above technical limits for boilers (but Cl may selectively go down)

Flame shape in a PC boiler

100% coal 50% coal/50% TWP 100% TWP

Source: Koppejan et.al., Extrapolation of co-firing results to large scale boilers using CFD calculations, SECTOR D7.8, 2014

Status of commercialisation

Marcel CREMERS, PhD

Senior Consultant, Green Thermal Power DNV GL - Energy

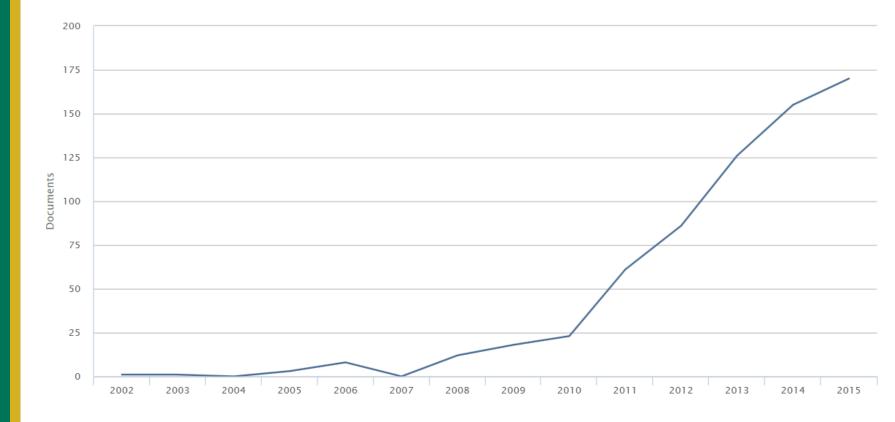
Current situation – available production capacity

Available installed capacity 100-250 ktons/y (facilities > 5 ktons/y)

Typical demonstration scale facility is 3-5 t/h (25-40 ktons/year)

Most built in 2010-2014

Few plants currently operational due to market conditions

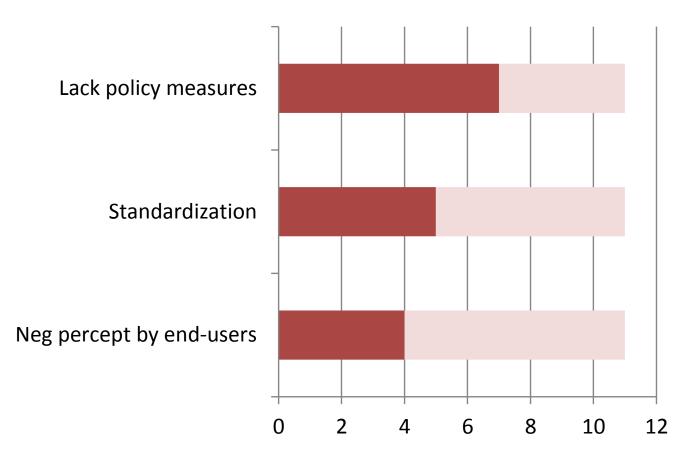

Interviews (2014): Progress rating 5.7 out of 10

Status of torrefaction initiatives as of early 2015

Developer	Technology	Location(s)	Production capacity (ton/a)	Scale and status Pilot scale: 0.05- 0.55 tph Demo scale: 0.5- 2 tph Commercial scale: > 2tph	Full integration (pre-treatment, torrefaction, combustion, heat cycle, densification)	Status
Clean Electricity Generation (UK)	Oscillating bed	Derby (UK)	30,000	Commercial scale	Yes	Available/operational
Horizon Bioenergy (NL)	Oscillating belt conveyor	Steenwijk (NL)	45,000	Commercial scale	Yes	Dismantled
Solvay (FR) / New Biomass Energy (USA)	Screw reactor	Quitman (USA/MS)	80,000	Commercial scale	Yes	Available/operational
Topell Energy (NL)	Fluidised bed	Duiven (NL)	60,000	Commercial scale	Yes	Mothballed
Torr-Coal B.V. (NL)	Rotary drum	Dilsen-Stokkem (BE)	30,000	Commercial scale	Yes	Available/operational
Airex (CAN/QC)	Cyclonic bed	Bécancour (CAN/QC)	16,000	Demonstration scale		Available/operational
Agri-Tech Producers LLC (USA/SC)	Screw reactor	Allendale (USA/SC)	13,000	Demonstration scale	Yes	Scheduled to be built
Andritz (AT)	Rotary drum	Frohnleiten (AT)	10,000	Demonstration scale	Yes	Out-of-service
Andritz (DK) / ECN (NL)	Moving bed	Stenderup (DK)	10,000	Demonstration scale		Unknown
BioEndev (SWE)	Dedicated screw reactor	Holmsund, Umea (SWE)	16,000	Demonstration scale	Yes	Available (2015)
CMI NESA (BE)	Multiple hearth	Seraing (BE)	Undefined	Demonstration scale		Unknown
Earth Care Products (USA)	Rotary drum	Independence (USA/KS)	20,000	Demonstration scale		Available/operational
Grupo Lantec (SP)	Moving bed	Urnieta (SP)	20,000	Demonstration scale		Unknown
Integro Earth Fuels, LLC (USA)	Multiple hearth	Greenville (USA/SC)	11,000	Demonstration scale		Unknown
LMK Energy (FR)	Moving bed	Mazingarbe (FR)	20,000	Demonstration scale		Unknown
River Basin Energy (USA)	Undefined	Laramie (USA/WY)	Undefined	Demonstration scale		Available/operational
Teal Sales Inc (USA)	Rotary drum	White Castle (USA/LA)	15,000	Demonstration scale		Available/operational
Torrec (FI)	Moving bed	Mikkeli (FI)	10,000	Demonstration scale		Available/operational
Agri-Tech Producers LLC (US/SC)	Screw reactor	Raleigh (USA/NC)	Undefined	Pilot stage		Available/operational
Airex (CAN/QC)	Cyclonic bed	Rouyn-Noranda (CAN/ QC)	Undefined	Pilot stage		Available/operational
Airex (CAN/QC)	Cyclonic bed	Trois-Rivières (CAN/QC)	Undefined	Pilot stage		Available/operational
Arigna Fuels (IR)	Screw reactor	County Roscommon (IR)	Undefined	Pilot stage		Available/operational
CENER (SP)	Rotary drum	Aoiz (SP)	Undefined	Pilot scale		Available/operational
Terra Green Energy (USA)	Multiple hearth	McKean County (USA/ PA)	Undefined	Pilot scale		Available/operational
Wyssmont (USA)	Multiple hearth	Fort Lee (USA/NJ)	Undefined	Pilot scale		Unknown
CÉA (FR)	Multiple hearth	Paris (FR)	Undefined	Laboratory scale		Available/operational
Rotawave, Ltd. (UK)	Microwave	Chester (UK)	Undefined	Laboratory scale		Unknown
Bio Energy Development & Production (CAN)	Fluidised bed	Nova Scotia (CAN/NS)	Undefined	Unknown		Unknown

IEA Bioenergy

Current situation - research

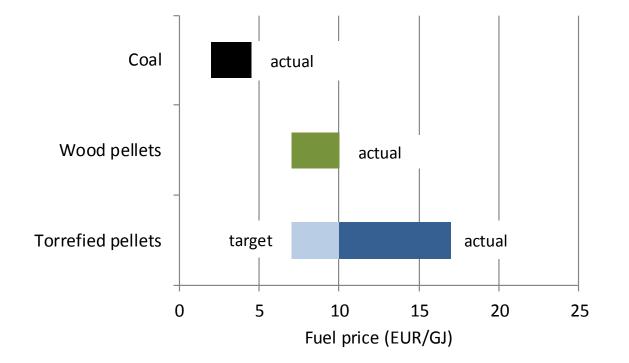


www.ieabioenergy.com

IEA Bioenergy

Restrictions

Top-3 restrictions (nr of responds, yes, no)


Policy measures

Primary instruments

- Innovation subsidy
- Renewable energy subsidy

Cost recovery gap

- Price parity with coal (fuel, CO₂)
- Competition with wood pellets

Fuel price affects marginal costs significantly

Standardization

- Necessity for trading
- Quality specification
- REACH
- MSDS
- Sustainability (GHG)

	DRAFT INTERNATIONAL STANDARD ISO/DIS 17225-8			
	ISO/TC 238		Secretariat: SIS	
	Voting begin 2016-01-14		Voting terminates on: 2016-04-14	
Solid biofuels — Fue	l specif	ications aı	nd classes —	
Part 8: Graded thermally tr e	eated a	nd densifie	ed biomass fuels	
Biocombustibles solides — Classes et	spécification	s des combustibles		
ICS: 27.190; 75.160.10		\mathcal{A}		
R		3		
X	This draft h	as been developed	ALLEL PROCESSING within the International Organization for ed under the ISO lead mode of collaboration	
	This draft is h		ISO member bodies and to the CEN member	
THIS DOCUMENT IS A DRAFT CIRCULATED FOR COMMENT AND APPROVAL. IT IS THEREFORE SUBJECT TO CHANGE AND MAY YON TE REFERENT TO AS AN INTERNATIONAL	Should this draft be accepted, a final draft, established on the basis of comment received, will be submitted to a parallel two-month approval vote in ISO and formal vote in CEN. To expedite distribution, this document is circulated as received from th committee secretariat. ISO Central Secretariat work of editing and tex composition will be undertaken at publication stage.			
NOT BE REFERRED TO AS AN INTERNATIONAL STANDARD UNTIL PUELSHED AS SUCH. IN ADDITION TO THEIR EVALUATION AS SENIC ACCEPTRALE FOR INDUSTRIAL ECCHNOLOGICAL COMMERCIAL AND USER PUERDES DAFT INTERNATIONAL TANDARDS MAY ON OCCASION HAVE TO ES CONSIDERED IN THE LIGEN TO THEIR COTENTIAL TO BECOME STANDARDS TO WITCH REFERENCE NAME TO				
TANDARDS MAY ON OCCASION HAVE TO E CONSIDERED IN THE LIGHT OF THEIR OTENTIAL TO BECOME STANDARDS TO				
WHICH REFERENCE MAY BE MADE IN NATIONAL REGULATIONS. RECIPIENTS OF THIS DRAFT ARE INVITED TO SUBMIT. WITH THEIR COMMENTS. NOTIFICATION OF ANY RELEVANT PATENT NOTIFICATION OF ANY RELEVANT PATENT NICHTS OF WHICH THEY ARE AWARE AND TO	ISO		Reference number ISO/DIS 17225-8:2015(E)	
RIGHTS OF WHICH THEY ARE AWARE AND TO PROVIDE SUPPORTING DOCUMENTATION.			© ISO 2015	

Negative perception by end-users

2003-2007

2008-2012

2012-2015

Co-firing commercial Lab scale (ECN) Promising results

IEA Bioenergy

New initiatives Demo-scale Huge claims Financial crisis Focus on torrefaction Process control IBTC

Product quality Availability Off-take contracts Wood pellet market

chicken and egg

Enablers

Top-3 enablers (nr of responds, yes, no)

Production scale up

Demand

Production

600 MWe coal plant 10% co-firing 6000 eoh

150 ktons/y torrefied pellets

Demo plant 25-40 ktons/y Partly utilized

Global production capacity < 150 ktons/y

Wood pellets 50-200 ktons/y per facility

Picture of balance: openclipart, designer Enhy

Win end-users confidence

- Identify (niche) markets: developing the chain
- Realistic promises
- Quality assurance
- Health and safety (pros and cons)
- Tradability & standardization

Bring down price

Price comparable with wood pellets, what should be feasible?

Commercial (target) price in USD/GJ

	Wood pellets	Torrefied pellets	Savings
Cost of biomass	4,28	4,28	0,00
Cost of electricity	0,60	0,74	0,14
Cost of labor	0,47	0,47	0,00
Financial costs	1,01	1,49	0,48
Other costs	0,40	0,43	0,03
Cost price at production site	6,76	7,41	0,65
Inland logistics from the plant to the port	1,12	0,57	-0,55
Deep sea shipment	2,04	1,28	-0,76
Cost price delivery harbor	9,92	9,26	-0,66

Reference: IEA Bioenergy task 32 status report (2012)

Breaking chicken-egg problem

- Specific offset markets (e.g. energy, (steel)industry, bio-economy)
- Develop the chain
- Alternative feedstock types

Figure: The Torr-Coal plant in Dilsen-Stokkem (Belgium). Courtesy Torr-Coal

Example (in development):

Arsari bio-based economy project REBUILD Kalimantan, Indonesia JV of

- Arsari Enviro Industri, and
- A.Hak Renewable Energy

Torrefaction technology supplier

Torr-Coal International

https://www.youtube.com/watch?v=srqq6ox2wkw

Implications on international trade

Michael Wild

President, International Biomass Torrefaction Council

Products available today

Source: Andritz AG

Torrefaction Implementation Indicator

Torgas Handling Torgas Utilisation Continuous torrefaction

Predictability and consistency of product Densification Feedstock flexibility Safety in plant Indoor storage Outdoor storage Standardisation of product Safety along supply chain Trade Registrations and Permissions Co-firing trials Co-firing burn tests Co-firing full scale Heat application trials Heat_application acceptance IEA Bioenergy www.ieabioenergy.com

done done done for many feedstocks done in optimisation mostly done done done in optimisation ISO in progress in optimisation active in progress done in progress In progress in progress open

Conditions for trade

- Will character of torrefied fuel permit using existing logistical infrastructure?
- Is there proof of non hazardousness or are special safety measures to be advised?
- o How about standardization and trading documents?
- o Is there demand?
 - Where is torrefied biomass a proven fuel
 - Where are reasonable potentials seen

Water uptake

ACB - Weather test prelim. results briquettes Method:

Briquettes (D=70mm, spruce, production 10.04)

filled in a box of 1,4 m height and been stored outside

After 43 days of storage box has been dismantled and briquette quality evaluated

21 rainfalls have been documented during storage time,
3 rainfalls with > 20 mm/m²

Sample	Diameter	TG	DS	Water uptake	Durability	Density
	[mm]	[%]	[%]	[%]	[%]	[kg/dm³]
Original Sample	71	25	97%	2	96	1,14
Sample 1	71	25	92%	1	84	1,14
Sample 2	71	25	93%	1	91	1,16

Sample

Sample 2

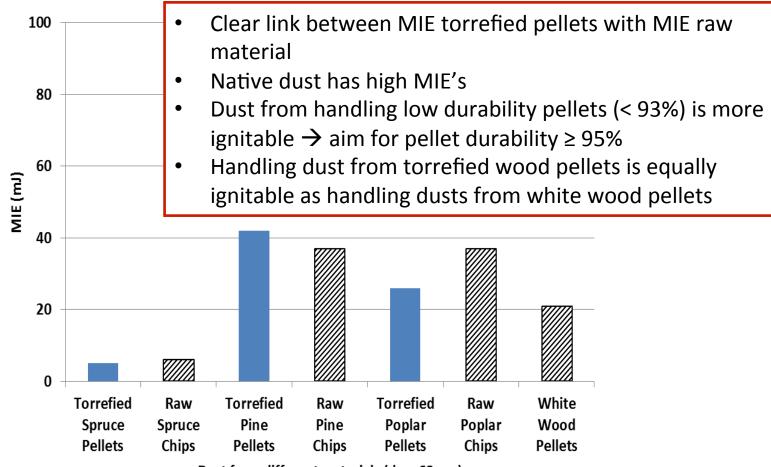
Small-scale outdoor storage

- High pellet durability essential for improved weather resistance in time
- Slight degradation outer surface; inner content pile intact

Source: SECTOR, ECN

IEA Bioenergy

Biological Degradation


Pellets stored 20 days at 20°C at 95% relative humidity 13 days 20 days Dry matter losses significantly higher for . white wood pellets, compared with torrefied wood pellets Also after uncovered outdoor exposure for 3 months Σ 0.6% 0.4% 0.2% 0.0% Torrefied Torrefied Torrefied Exposed Exposed Exposed White Torrefied Coal Pine Torrefied Torrefied Torrefied Poplar Poplar Spruce wood 270 + Coal 270 260 270 Poplar Spruce Pine 270 260 270 (50/50 w)

Source: Carbo et al. "Fuel pre-processing, pre-treatment and storage for co-firing of biomass and coal" in "Fuel Flexible Energy Generation" ed. J. Oakey, 2015

www.ieabioenergy.com

IEA Bioenergy

Minimum Ignition Energy (MIE)

Dust from different materials (dp < 63 μ m)

Source: Carbo et al. "Fuel pre-processing, pre-treatment and storage for co-firing of biomass and coal" in "Fuel Flexible Energy Generation" ed. J. Oakey, 2015

IEA Bioenergy

Leaching/Eluation, Ecotoxidity

BET Surface is reduced

	Probe 1 R	Probe 1 P	Probe 2 R
Spezifische Oberfläche (m²/g)	1,96	1,72	1,19

Daphnientests >1/8 dilution of Eluate below the analytical limit of determination

Proof of non toxic character of leaching water against fish DIN 38412-31

Source: Torrlog

Quality - Standardisation of 17225-8:2016

 Fuel specifications and classes – Part 8: Graded thermally treated and densified biomass fuels

Technical Specification in Q4 2016

Different Classes (NCV,

Durability, Bulk Density, Volatile Matter etc.)

Parameters yet to be defined:

Grindability

Water resistance

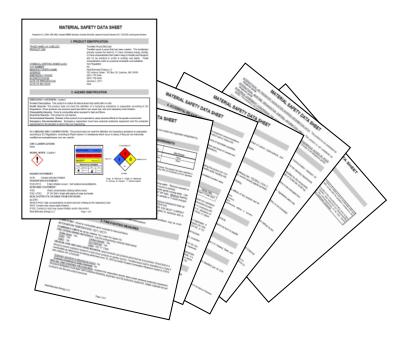
Energy balance

Table 2 — Specification of graded pellets produced by thermal processing of non-woody biomass TA₂ 2. 1 Herbaceous biomass ISO 17225: Solid biofue Sple 1 - Specification of graded pellets produced by thermal processing of woody biomass from agriculture and 2. Herbaceous 2. Herbaceous horticulture biomass 2.2.1 By-products and TW3L 3. Fruit biomass biomass TW2H TW2L TW1L 3. Fruit biomass TW1H residues from food and 4. Aquatic biomass Property class, Analysis method Unit 4. Aquatic biomas: herbaceous processing 1.1 Forest, plantation 1.1 Forest, plantation Normative 1.1.1 Whole trees without dustry, chemically and other virgin wood and other virgin wood ntreated herbaceous Origin and source, roots 1.2 By-products and 1.2 By-products and ISO 17225-1 Table 1 Sidues 1.1.3 Stemwood residues from wood residues from wood Orchard and horticulture 1.1.4 Logging residues processing industry processing industry 1.2.1 Chemically untreated 1.3.1 Chemically 1 By-products and 1.3.1 Chemically wood by-products and untreated used wood dues from food and fruit untreated used wood residues ^a D06 to D25, D ± 1; ssing industry. D06 to D25, D ± 1; D06.6±1; cally untreated fruit 3,15 ≤ L ≤ 40 Diameter, D^b and Length L^c mm 3,15≤L≤40 D08, 8±1; (from D06 to D10) (from D06 to D10) 150 17829 tic biomass $3.15 \le L \le 40$ 3.15 < L ≤ 50 3.15 < L ≤ 50 6 to D25, D±1; According Figure 1 (from D12 to D25) (from D12 to D25) D06 to D25 $15 < L \le 40$ D. to D25, D ± 1; M10 < 10 3.15-654 M08≤8 M10≤10 m D06 to D10) M10 < 10 3 <u>L≤40</u> M08 < 8 .ron w-% 15 < L ≤ 50 DD1 Moisture, M^d, (from _________) (from _______) (from _______) (from _______) (from _______) (from ______) (from _____) (from ____) (from _____) (from ____) (from _____) (from ____) (from _____) (from ____) (from ____) (from ____) (from ____) (from _____) (from ____) (from _____) (from _____) (from _____) (from ____) (from ____) (from ____) (from ____) (from ____) 3,1 as received ISO 18134-1, ISO 18134-2 D12 to D2 3,15 < L ≤ 50 (fr 01) A5.0 < 5.0 wet basis A3.0 ≤ 3,0 (from D12 to D25) A1.2 < 1,2 DU95.0 ≥ ,0 w-% dry DU96.0 > 96,0 Ash, A. ISO 18122 $M10 \le 10$ DU97.5≥97,5 w-% Mechanical durability, DU, F4.0 ≤ 4,0 F2.0 ≤ 2,0 F6.0 0 F3 3,0 5,0 as received A10.0 ≤ 10,0 F1.0 ≤ 1,0 ISO 17831-1 F2.0 ≤ 2,0 Value to be stated w-% DU96.5 ≥ 96.5 Fines, F •, ISO 18846 DU95.0 ≥ 95,0 as received 20 <4 yount to be unt to be Type a. F2.0 ≤ 2,0 w-% dry rated Type an Type and amount t Additives^f F3.0 ≤ 3.0 nount Q_d≥21,0 Q_d<21,0 Type and amount Qd ≥ 21,L 21,0 Type and amount 04 Qd < 5,8 Q_d ≥ 5,8 to be stated Q_d ≥ 5,8 , _{2d} < 5,8 Od ≥ Net calorific value, Qa^g, MJ/kg or Qa 2 ,b **O**d Q17 ≥ 17 or to be stated Value to be stated Value to be stated 150 18125 Q4.7≥4.7 basis V ue to BD550 > 550 Value to be stated $BD650 \ge 650$ Value to be stated 650 us0 b. J≥700 Value to be stated Value to be stated BD600 ≥ 600 Bulk density, BP BD550 ≥ 550 red ue to be stated 150 17828 Value to be stated N1.0 ≤ 1,0 N2.0 ≤ 2,0 Carbon, C, ISO 1694 $N0.4 \le 0.4$ $N0.4 \le 0.4$ N2.5≤2,5 S0.1 ≤ 0,1 w-% dry S0.2 ≤ 0.2 S0.05 ≤ 0,05 Nitrogen, N, ISO 1694 S0.3 ≤ 0,3 S0.04 < 0,04 Cl0.1 < 0.1C10.2 ≤ 0.2 w-% dry C10.05 < 0,05 Sulphur, S, ISO 16994 C10.3 ≤ 0,3 C10.03 ≤ 0,03 < 2 ≤2 w-% dry Value to be stated Chlorine, Cl, ISO 16994 < 2 <1 ≤1 < 2 Value to be stated mg/kg dry Arsenic, As, ISO 16968 <1 ≤ 50 < 0,5 Value to be stated <15 mg/kg dry Cadmium, Cd, ISO 16968 <15 ≤ 20 < 10 Value to be stated < 20 mg/kg dry Chromium, Cr, ISO 16968 < 20 ≤10 <10 Value to be stated < 10 mg/kg dry < 0,1 < 10 Copper, Cu, ISO 16968 Value to be stated < 10 ≤ 0,1 ≤10 mg/kg dry Lead, Pb, ISO 16968 Value to be stated < 0,1 ≤ 0,1 ≤ 200 < 10 mg/kg dry Value to be stated Value to be stated Value to be stated < 10 Mercury, Hg, ISO 16968 < 10 <100 mg/kg dry Nickel, Ni, ISO 16968 < 100 < 100 Value to be stated mg/kg dry Value to be stated Should be stated Zinc, Zn, ISO 16968 Value to be stated Should be stated Volatile matter, VM, ISO 18123 w-% dry To be stated To be stated Informative To be stated gth shall be $\leq 45 \text{ mm}$. Ash melting behaviour h, Negligible levels of glue, grease and other timber production additives (< 1 w-%) used in sawmills during production of timber and timber product from virgin wood are acceptable if all chemical parameters of the pellets are clearly within the ISO 21404 ard ISO 18846. nhibitors or any other additives like limits and/or concentrations are too small to be concerned with Selected size D06 or D08 of pellets to be stated for TW1H and TW1L. For D06 to D10 the amount of pellets longer than 40 mm can be 1 w-%. Maximum length shall be ≤ 45 mm. rature (DT), hemisphere At the point of delivery. Fines less than 3,15 mm are screened by hand according standard ISO 18846. Type of additives to aid production, delivery or combustion (e.g. pressing aids, slagging inhibitors or any other additives like Net calorific value as received (Q) resulting from net calorific value on dry basis 21,00 MJ/kg and moisture content (M) 8% is www.ieabioe 19,13 MJ/kg (5,3 kWh/kg) and by 10 % moisture content (M) is 18,65 MJ/kg (5,2 kWh/kg). ©Wild&Partner All characteristic temperatures (shrinkage starting temperature (SST), deformation temperature (DT), hemisphere

ISO/TS 17225-8:2016

TA3

IEA Bioenergy

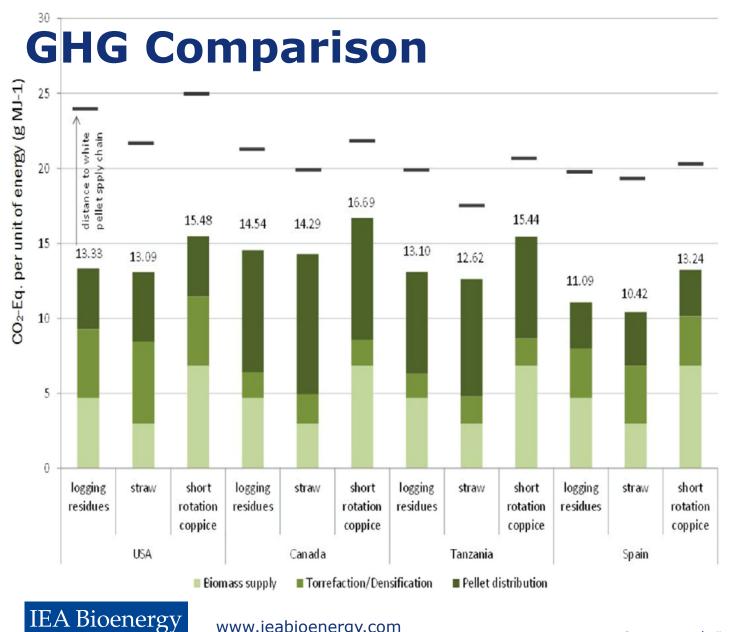

Broadening Feedstock Basis

- ISO 17225 TS does define product classes derived from wood and product classes from non woody biomass
- Torrefaction is clearly seen as door opener to the use of by-products from a wide range of agro food industries or/and feedstock from energy plantation such as grasses, fast growing
- By this torrefaction is addressing the key cost component in a bioenery value chain, the feedstock costs and can bring this down substantially.
- This can also be the starting point for new value chains into Chemical Industry, torrefaction forming first part of raw material processing into high value product lines

Documentation, Permissions and Registrations

- MSDS with SECTOR
- REACH
 - Substance Information
 - Exchange Forum "SIEF"
- Working on IMSBC

IEA Bioenergy



 All testing to date results in: equal or superior to wood pellets

IMO testing

- IMO 4.1 flammability test: not flammable
- IMO 4.2 self heating test: No self heating properties
- Consequently:

Torrefied material does not need to be classified as flammable solid material or as a self heating substance

www.ieabioenergy.com

Source: D. Thrän, DBFZ

Topell Energy

Strictly private & confident

Succesfull large scale co-firing test proves benefits of Topell Energy's torrefied pellets

Background on co-firing test Test results • Successful large scale co-firing test in Q4 2013 Confirma characteristic • Partners included ECN and utility companies RWE/Essent, Vattenfall/Nuon and GDF SUEZ No adverse of the subscripts/SUEZ

 Total of 2,300 tons were co-fired at a 5% - 25% co-firing rate⁽¹⁾ at the Amer power plant of RWE/Essent in the Netherlands

Observations:

NUON/Vattenfall Buggenum experience*

- Maximum 70% co-gasification on energy basis achieved at
- 90% nominal load without major modifications
- 1200 tons of torrefied pellets during 24 hours trial
- Relatively low durability led to significant dust formation
- Low durability disadvantageous during outdoor storage
- Low Minimum Ignition Energy (MIE)

han. Central European

ECN conducted lab-scale test programme to characterise pellets and provided consultancy to mitigate risks during commercial operation

s Conference, Jan '14, Gra

RWE/Essent AMER-9 experience*

Consortium:Topell, Essent, NUON, GdF Suez, ECN as part of Dutch TKI Pre-treatment Project
Maximum 25 wt% co-milling on weight basis; 5 wt% co-firing
2300 tons of Topell torrefield pellets during. November & December '13
Observations: No significant issues
ECN conducted lab-scale characterisation of pellets and provided consultancy to mitigate risks during.

DONG Studstrup-3 experience

- Two units with total capacity of 714 MW_{e} and 986 $\mathrm{MW}_{\mathrm{th}}$
- Dedicated milling on MPS roller mill adapted for either coal or white pellets
- 200 tons of Andritz/ECN torrefied spruce pellets during 8 hours trial
- Co-firing share: 33 wt%

commercial operation

- Observations:
- No dust formation during unloading
- Sufficiently high durability; no issues with dust formation in chain conveyors
- Normal Minimum Ignition Energy (MIE)

ECN conducted lab-scale characterisation of pellets Source: ECN

37

Non Power Applications

Steel Industry	Replacement of coking coal Pulverized coal Fossil fuels
Chemical/Petrochemical	Gasification Chemicals from Biomass
Pulp&Paper	Use in lime sludge kilns Coal substitute for Energy
Non Metallic Minerals	Substitution of conventional fuels in kilns

Non Power Applications by Sector

	Biomass use as of	Prediction for 2025		
Industries	2012 and percentage of total consumption	Biomass	Torrefied biomass	
Iron and steel	0.15 EJ (1%)	2.0 %	0.4 % (60 PJ)	
Chemical and petrochemical	0.06 EJ (1%)	1.5 %	Low	
Pulp and paper	2.20 EJ (36%)	38-40 %	1.5 % (90 PJ)	
Non-metallic minerals (glass, ceramic, cement)	0.40 EJ (2%)	3.0-3.5 %	0.8 % (150 PJ)	
Transport equipment and fabricated metal products, machinery and equipment	0 PJ (0%)	0.1 %	Low	
Total	2.80 EJ (0.7 %)	30 %	10 % (300 PJ)	

IEA Bioenergy

Non power applications by region

	Current industrial	Predicti	on of consumption by indu	stry in 2025
Region	biomass use and proportion of the total biomass consumption for energy (IEA)	Biomass	Torrefied biomass	Most attractive industries for torrefied-biomass use
EU-28	1 EJ (9%)	13%	5-10%	Pulp and paper, non-metallic minerals
Africa	0.8 EJ (32%)	35%	Low	
Asia	2 EJ (5%)	7%	0.5-1%	Iron and steel, pulp and paper
Canada	0.3 EJ (10%)	13%	2-3%	Pulp and paper, non-metallic minerals
US	1 EJ (11%)	14%	2-3%	Non-metallic minerals, pulp and paper
Australia	0.1 EJ (11%)	15%	1-2%	Pulp and paper
Brazil	1.5 EJ (42%)	43%	1-1.5%	Iron and steel, pulp and paper, non-metallic minerals
Japan	0.1 EJ (3%)	3.5%	0.5-1%	Non-metallic minerals, pulp and paper

Where we are today

- Quality according ISO TS
- Handling & Storage advantage in logistics verified
- Cost reductions shown
- Acceptability and advantages in co-firing verified by utilities
- Non Woody Biomass successfully tested
- Product is available
- Several technologies
- More than 1 producer

IEA Bioenergy

 Final prices to be calculated on basis of offtake, but surely competitive

Download the Reports

Download from: http://www.bioenergytrade.org/

www.ieabioenergytask32.com

Marcel Cremers, <u>Marcel.Cremers@dnvgl.com</u> Michael Wild, <u>michael@wild.or.at</u>

Questions?

Thank you for your attention

Contact Details

jaapkoppejan@procede.nl

marcel.cremers@dnvgl.com

michael@wild.or.at

h.m.junginger@uu.nl

IEA Bioenergy Website www.ieabioenergy.com

Contact us: www.ieabioenergy.com/contact-us/