The co-firing of biomass materials in large coal-fired boilers

Presentation to IEA Bioenergy Exco W R Livingston Copenhagen May 2005

Experience of biomass co-firing in Britain to date

- All of the coal-fired power plants in Britain are co-firing biomass, at least on a trial basis.
- The total number of ROCs (MWh) from biomass cofiring to date exceeds 1.8 million.
- The range of biomass materials co-fired includes:
 - wood in a variety of forms, principally sawdust or pellets,
 - imported dry residues from the olive oil and palm oil industries, and
 - Liquid biomass materials, principally talloil.

ROCs issued to date

Station	Capacity (MW _e)	Generator	Cumulative ROCs
Aberthaw	1,455	RWE npower	36,287
Cockenzie	1,200	Scottish Power	0
Cottam	2,000	EdF	44,150
Didcot	2,100	RWE npower	25,492
Drax	4,000	Drax Power	241,955
Eggborough	1,960	British Energy	10,092
Ferrybridge	2,035	SSE	596,410
Fiddlers Ferry	1,995	SSE	305,807
Ironbridge	970	E.on UK	98,337
Kingsnorth	2,034	E.on UK	131,254
Longannet	2,400	Scottish Power	183,214
Ratcliffe	2,010	E.on UK	12,440
Rugeley	1,000	Int. Power	67,569
Tilbury	1,085	RWE npower	2,635
West Burton	1,980	EdF	2,292

∕ MitsuiBabcock

Biomass co-firing by pre-blending and co-milling

- The majority of the stations are co-firing biomass by pre-blending the biomass with the coal, and co-milling and co-firing the blended fuel.
- In general, the co-firing ratio is less than 10% on a heat input basis.
- At these co-firing ratios, the effects on the performance of the boiler and the environment impacts have been modest.
- Most of the technical problems have been associated with the reception, storage and handling of the biomass materials
- The constraints on the co-firing ratio have been:
 - The availability of fuel,
 - The capacity of the biomass handling/blending system, and
 - The limitations of the coal milling equipment.

The co-milling of biomass with coal in coal mills

- In Britain, a range of biomass materials are being co-milled with coal in ball and tube mills, and in vertical spindle ball and ring, and roller mills.
- These mills depend on the coal particles being subject to brittle fracture, and this does not apply to most biomass materials.
- There is a tendency for the biomass particles to accumulate in the mill, during normal operation, and to take longer to clear the mill during shutdown.
- With vertical spindle mills there is also a tendency for the mill differential pressure and the mill power take to increase when co-milling biomass.
- The mill product topsize tends to increase, due to the lower particle density of the biomass, i.e. larger biomass particles can exit the classifier.
- There are mill safety issues when co-milling biomass, and there may be a requirement to modify the mill operating procedures when co-milling biomass.
- When co-milling wet biomass materials there will be an impact on the mill heat balance, and this may be a limiting factor.

Recent trends in biomass co-firing

- The general approach at a number of the stations has been as follows:
 - Establish co-firing by pre-blending and co-milling on the preferred fuel at minimum capital cost, and with short project lead times.
 - Obtain the Section 11 Variation for commercial co-firing activities.
 - Modify the Variation to permit greater flexibility in the fuel supply and the co-firing ratio.
 - Integrate the biomass co-firing into the normal station operations.
 - Upgrade the biomass reception, storage, handling and blending facilities, to increase throughput and reduce mechanical handling constraints, dust generation, etc.
 - Start consideration of the direct firing of the biomass to permit higher co-firing ratios.

Direct firing options for biomass

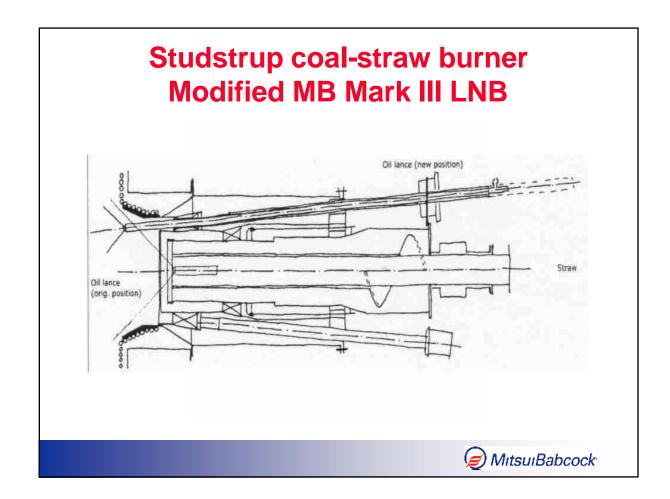
- The biomass has to be pre-milled either off-site or onsite,
- All direct co-firing systems involve pneumatic conveying of the biomass from the fuel reception/handling facility to the boiler house.
- There are three basic direct co-firing options:
 - Direct injection into the furnace with no combustion air,
 - Installation of new dedicated biomass burners, and
 - Injection of the biomass into the pulverised coal pipework or at the burner, and co-firing with coal through the existing burners.

Direct injection without combustion air

- Direct injection through the furnace wall with only conveying air and no flame stabilisation.
- Demonstrated, on a trial basis, in a downshot-fired boiler in Britain,
- Simple and cheap to install,
- Limited application for wall or corner-fired boilers.

Installation of new, dedicated biomass burners

- Not yet demonstrated in Britain, but has been done in continental Europe.
- Modified pulverised coal burners or cyclone burners are being considered.
- New burner locations in rear or side walls.
- Secondary air supply required, i.e. significant ductwork modifications.
- The preferred new burner locations, and the impacts on the pulverised coal combustion and the furnace performance need to be assessed.


MitsuiBabcock

- The dedicated biomass burners have not been extensively demonstrated commercially.
- Complex and relatively expensive to install.

Injection of the biomass into the pulverised coal pipework or at the burner

- Not yet demonstrated in Britain, but has been done in continental Europe.
- Injection locations in the pulverised coal pipework are either at the mill outlet or local to the burners.
- Relatively simple and cheap to install, but there implications on the mill operation and control.
- The risks of interference with the operation of the coal firing system need to be assessed.
- If the biomass is to be injected at the burner, there are significant burner modifications required.

Conclusions

- Direct co-firing projects are being developed in British coal-fired power plants as a means of increasing the cofiring ratio.
- A number of approaches are being adopted, depending on the fuel and the preferences of the operator, viz;
 - Direct injection to the furnace, with no combustion air,
 - Dedicated biomass burners,
 - Injection of the biomass into the pulverised coal pipework or at the burner.

MitsuiBabcock

- No single preferred solution has been identified, as yet.