

Bioenergy and indirect land use change

Jeremy Woods

Jeremy woods@imperial.ac.uk
(Imperial College and Rothamsted Research)

IEA Bioenergy WORKSHOP ON THE IMPACT OF INDIRECT LAND USE CHANGE (ILUC)
12th May 2009
Westin Hotel, Rotterdam

Definitions are important

Bioenergy

- Biomass: any form of organic matter. Generally solid and used for heat and / or electricity
- Biofuels: generally liquid (or gaseous) fuels used for transport applications (also for cooking or lighting). Can also be used for electricity and/or heat generation

Land cover

- Crop land
- Forest
- Idle/marginal/resting/wasteland

'Carbon opportunity cost'

• impacts of the possible alternative fates of land use?

Importance of Land Use Change

Table 2: Average annual budget of CO2 for 1980 to 1989 and for 1989 to 1998, expressed in Gt C yr-1 (error limits correspond to an estimated 90% confidence interval).

	1980 to 1989		1989 to 1998	
	GtC/yr	±	GtC/yr	±
1) Emissions from fossil fuel combustion and cement				
production	5.5	0.5	6.3	0.6a
2) Storage in the atmosphere	3.3	0.2	3.3	0.2
3) Ocean uptake	2	0.8	2.3	0.8
4) Net terrestrial uptake = (1)-[(2)+(3)]	0.2	1	0.7	1
5) Emissions from land-use change	1.7	0.8	1.6	0.8 ^b
6) Residual terrestrial uptake = (4)+(5)	1.9	1.3	2.3	1.3

a Note that there is a one-year overlap (1989) between the two decadal time periods.

Source: IPCC Special Report on Land Use, Land Use Change and Forestry - summary for policy makers (2000)- p5

b This number is the average annual emissions for 1989-1995, for which data are available.

Terrestrial Carbon stocks

Table 1: Global carbon stocks in vegetation and soil carbon pools down to a depth of 1

1116							
	Area	Global Carbon Stocks (Gt C)			Biome a	Biome average	
Biome	Bha	Vegetation	Soil	Total	tC/ha	tCO2/ha	
Tropical forests	1.76	212	216	428	243	892	
Temperate forests	1.04	59	100	159	153	561	
Boreal forests	1.37	88	471	559	408	1496	
Tropical savannas	2.25	66	264	330	147	538	
Temperate grasslands	1.25	9	295	304	243	892	
Deserts and semideserts	4.55	8	191	199	44	160	
Tundra	0.95	6	121	127	134	490	
Wetlands	0.35	15	225	240	686	2514	
Croplands	1.60	3	128	131	82	300	
Total	15.12	466	2011	2477	164	601	
Total (avg) without croplands	13.52	463	1883	2346	174	636	

Source: IPCC Special Report on Land Use, Land Use Change and Forestry - summary for policy makers (2000)- p4

Key sensitivity parameters and uncertainty

- Net biofuel yield per ha (GJ/ha)- beware co-products!
- 'Direct' GHG reduction achieved by each biofuel ('attributional' LCA basis)
- Co-products (particularly animal feed, electricity, heat but also food, chemicals and materials)
- Allocation methods for those co-products
 - Mass? Energy? Substitution? Economic?
- Share of responsibility for deforestation assigned to biofuel production (direct and indirect) and type of forestry impacted
- Change in carbon stocks as result of LUC (direct and to a lesser extent indirect)

GHG emissions trajectory(s)

Avoided CO_{2eq} emissions from EU bioethanol production inc ILUC (+30 indirect land required as per Gallagher):

- assumes 50% GHG reduction factor for bioethanol using RTFO methodology
 - Porter cellulosic conversion will achieve 90% to 100%+ GHG reduction
- 16 Mha directly required planted at 1.6Mha/yr for 10 years from 2010
 - 90% on cropland, 5% grassland and 5% forest land
 - Or 70% cropland, 15% grassland and 15% forest land
- 50% wheat, 35% sugar beet and 15% sugarcane based!

Summary

- Very large amount of uncertainty in the scale and spatial dispersion of future land use change
- Some aspects may be too difficult / complex to adequately cover in systems models
- Indirect land use change is not unique to biofuels but covers all activities that affect land including e.g. set-aside / CRP
- Options (not exclusive)
 - Increasing complex (scale/resolution and methodology) global land use models coupled to market models coupled to atmospheric models
 - Development and implementation of 'sustainability criteria' implemented through assurance and certification
 - Resolution of boundary conflicts e.g. geographic (winners and losers; links with REDD), and methodological covering 'leakage', double accounting, etc

