

COMPARISON OF AVAILABLE MODELLING APPROACHES FOR ILUC ASSESSMENTS RELATED TO BIOFUELS

Peter Witzke

EuroCARE, Bonn, Germany

IEA Bioenergy workshop, Peter Witzke

EuroCARE

Outline of the Presentation

1

- Introduction
- · Review of existing methodologies and models
- Critical modelling issues
 - "Available" area definition

2

- Calibration issues
- Elasticities
- Linking Issues
- Conclusions

Possible cases of ILUC with certificates

Immediate effect 1: Import diversion

More EU demand for palm oil from certified production of country A

- => Less palm oil exports from A to country C
- => More palm oil exports from non certified production in country B to country C
- => potential loss of tropical forests in B

Immediate effect 2: Admissible ILUC

More EU demand for palm oil from certified production of A

- => Less exports of other crop products from A to country C
- => More other crop exports from non certified production in country B to country C
- => potential loss of tropical forests in B

Immediate effect 3: Yield increase

More EU demand for palm oil from certified production of A

3

=> Yield increases in country A matching increased demand

Favourable case, but would imply high yield responsiveness relative to area responsiveness (Intensification may have other undesirable impacts: N2O, biodiversity...)

Rotterdam 12.05.09

IEA Bioenergy workshop, Peter Witzke

EuroCARE

Policy Instruments

CAP

- At the beginning of the production chain
- Improved competitiveness of energy crops
- > Centralized policy (EU level)
- > Instruments:
 - set-aside
 - direct payments
 - aid for energy crops

Regional und Structural Policy

- > In the middle of the production chain
- Only in specific support areas
- > Centralized policy (EU level)
- > Instruments:
 - Investment aid

Energy Policy

- At the end of the production chain
- Decentralized policy (strong national influence)
- > Instruments:
 - tax reduction
 - blending goals

Trade Policy

- > Traditionally: protection for European bioenergy production (raw commodities as well as biofuels)
- > Centralized policy (EU level)
- > Instruments: tariffs, import quotas, certification systems

Implicit Policy

> Hypothetical instruments: quantity targets or carbon price

4

Rotterdam 12.05.09

IEA Bioenergy workshop, Peter Witzke

EuroCARE Review of some economic models Low Endogeneity on bioenergy High **PRIMES Energy Models POLES** Biomass and land use detail **USAGE** CGE Models DART GTAP-E LEITAP **GOAL** IMPACT **AGLINK** Agricultural and AGMEMOD ESIM **FAPRI** Forestry Models CAPRI **GLOBIOM EUFASOM RAUMIS** Rotterdam 12.05.09 5 IEA Bioenergy workshop, Peter Witzke

EuroCARE

Energy Models

PRIMES:

- Independent supply functions for energy crops with capacity constraints
 - No set aside policies or other CAP, no interactions between crops etc.
 - "Available area" is behind capacity contraints
- Detailed transformation processes in new biomass component (12 biomass energy products)
- Interaction with demand through bioenergy related prices
- Demand for bioenergy derived as in general PRIMES:
 - Intertemporal cost minimisation, given demand for energy incl. total transport services, GDP, crude oil price, world markets)
 - · non competitive price setting,
 - Detailed vintage approach for whole energy sector (24 energy forms like crude oil, diesel, gasolene, electricity etc., several hundred plant types),
 - · capacity expansion and use, learning, adaptive expectations

POLES:

- More aggregated than PRIMES, but global

6

 Use of biofuels modelled within a technology diffusion module (technological pathways)

CGE models

- LEITAP (ongoing project EURURALIS 2.0):
 - 1st generation of biofuels: standard arable feed stocks (oilseeds, cereals, sugar beet)
 - Nested CES structure: capital-energy → energy → non-electric → non-coal → fuel → diesel & gasoline vs. ethanol → raw inputs
 - 2nd generation of biofuels (planned): new arable crops, forestry, waste
 - Parameter changes to reflect bio-fuel directive, but subsidies and tariffs included
- GTAP-E
 - Less detailed starting point for LEITAP
 - Version with 18 Agro Ecological Zones (AEZ) and explicit by-products
- USAGE (Dixon, Rimmer)
 - Detailed in energy economy and other nonag sectors (about 500),
 - only crop and animal based agriculture
 - Increase in biofuel use modelled through changes in parameters (productivity)
- DART (IfW)
 - GTAP database, dynamic
 - Aggregate on agriculture but links to RAUMIS & CAPRI being developed
- GOAL (Gohin)
 - Strong ag focus (32 ag products), 31 processing sectors, 3 non ag sectors (input supply, food retail, other prod & services), only EU15
 - Biofuel directive as additional public demand

Rotterdam 12.05.09

7

IEA Bioenergy workshop, Peter Witzke

EuroCARE

Agricultural Equilibrium Models

- AGLINK:
 - Prod of biofuel
 = f (net prod cost / crude oil price), [cost net of by-products]
 - Shares of feed stocks = CES (net prd cost i / net prd cost j)
 - demand shifters for simulation
 - Capacity utilisation separate from expansion
- ESIM:
 - Prod of biofuel
 = f (biofuel price, ag raw product prices, prices of by products)
 - Biofuel price = f (fossil price, taxes, tariffs)

8

- Shares of feed stocks = CES(net prd cost i / net prd cost j)
- demand shifters for simulation
- 2 functions for feed stocks on set aside land and non set aside land (regime switch?)
- FAPRI:
 - Supply = f (ethanol price, corn price, prices of by products, gas price)
 - Demand = f (ethanol price, fossil price, GDP, population, policy)
 - Capacity utilisation separate from expansion
- AGMEMOD:
 - decomposition of demand: food, industrial and biofuel use, details evolving
 - demand shifters for simulation
- IMPACT (IFPRI):
 - Exogenous demand for biofuels is translated into demand for feed stocks

Ag and Forestry Programming Models

EUFASOM (more aggregated but global: GLOBIOM) :

- Explicit non-food production lines from agricultural and forestry products
- Endogenous prices and production levels for renewable products
- Challenging plan: Extend detailed programming approach to processing stage
- Permits strong regional disaggregation for linkage to biophysical models for agriculture and forestry
- Strong responsiveness of LP framework counteracted by disaggregation
- Calibration problems (observed forests exceed profit max age)

RAUMIS:

- Traditional activities plus 'energy maize'.
- Prices exogenous, no observations in base year
- Pragmatic calibration: "PMP terms" taken over from cereals

CAPRI

- Exogenous demand for biofuels is translated into demand for feed stocks
- Linkage to GTAP: price changes adopted
- Linkage to PRIMES: quantity changes of EU biofuel demand adopted
- Endogenous response to incentives with behavioural functions under way

Rotterdam 12.05.09

9

IEA Bioenergy workshop, Peter Witzke

EuroCARE

Issue 1: "Available area" definition

Wide definition of available areas for ILUC modelling

All non urban and accessible area suitable for agricultural or forestry production is "available", perhaps after deducting "protected" areas (GTAP-AEZ, LEITAP), but use is determined by prices

=> May neglect natural differences between areas used for forestry, pasture and arable agriculture

Narrow definition of available areas for ILUC modelling

Forestry (and perhaps permanent pasture) is considered "not available" (ESIM, CAPRI)

- => removes most interesting question for global analysis from consideration
- => Defendable for narrow European analysis

Very narrow definition of available area

Available is all land currently unused for agriculture and forestry (set aside and fallow land)

=> Key economic problem is turned into purely technical problem for feasibility or potential calculations (IMAGE stand alone application)

No check of available area

In models with an implicit "other area" (e.g. FAPRI international model)

=> Important plausibility check is missing

10

Issue 2: Calibration

- Key problem: missing observations
- Parameters transferred from other products (RAUMIS, ESIM, LEITAP)
 - RAUMIS: uses cereal info for energy maize
 - ESIM derives demand parameters for biofuels from food demand
 - LEITAP: uses cereal info for miscanthus
- Base year calibration
 - permits to include current policies
 - increases confidence
 - but base year calibration is easy with free parameters
- Responsiveness matters, not base year reproduction!

Rotterdam 12.05.09

11

IEA Bioenergy workshop, Peter Witzke

EuroCARE

Issue 3: Yield and area elasticities

- Econometric problem: how to estimate when state of technology, industry structure and policy framework is changing together with prices?
- Parameters often based on judgement which may be contentious
- Recommendation: Sensitivity analysis, transparent documentation of elasticities
- Possibility of threshold effects (as is typical in programming models)
- Should publicly funded research or technology transfer be factored into elasticities?
 - No, for the sake of transparency
 - No, as linkage is not necessary
- At least equally important: baseline projections for yields as ILUC decreases with yields
 - Long run yield projections (50 years) difficult
 - both for statistical procedures (length of series, stable trend?) as well as
 - technical procedures (observed yields in 2000 probably appeared infeasible in 1950)

Issue 4: Linking models

- Different focus of models may yield complementarities
 - CAPRI PRIMES: EC4MACS
 - ESIM LEITAP: Scenar2020...
- Easy if only one way flow of information
 - CAPRI => RAUMIS, GTAP => CAPRI (prices)
 - IMAGE => CLUEs (aggregate areas)
- Iterative calibration if several variable are exchanged, or:
- Response functions or parameters if feasible
 - SENSOR, SEAMLESS, EC4MACS, EDIM
 - CAPRI supply-market interaction: also within model
- Cross checking of key variables (soft linkage)
 - Current status in PRIMES FASOM CAPRI interaction
 - Typical in initial phase of model interaction
 - Contradictory results may be inconsistent, but are still illuminating

Rotterdam 12.05.09

13

IEA Bioenergy workshop, Peter Witzke

EuroCARE

Conclusions

- Heterogeneity of approaches typical for new area of research
- Minimalist approach to policy:
 - Shock to feedstock demand or carbon price
- Infeasible approach:
 - Explicit policy at all levels: border measures, certification, national energy policy, regional investment support
- Key limitation: data
 - In next years increasingly overcome for first generation biofuels => less excuses for not estimating
 - Bioethanol and biodiesel data on global trade flows?
 - Second generation biofuels? => Calibration problems
- Key limitation: complexity
 - No super model can handle the global economy, product disaggregation, technology disaggregation, regional disaggregation at the same time

Thank you for your attention!

15

IEA Bioenergy workshop, Peter Witzke