

Energy research Centre of the Netherlands

Overview of thermal pre-treatment processes for large-scale biomass application Jaap Kiel

Workshop IEA Bioenergy ExCo 66, York UK, 12 October 2010

Presentation overview

- Thermal pre-treatment / upgrading options
- Pyrolysis (bio-oil)
- Torrefaction (biocoal)
- Gasification (bioSNG)
- Conclusions

Biomass – a difficult energy source

- ... in view of:
 - Logistics (handling, transport and feeding)
 - End-use (combustion, gasification, chemical processing)
- Difficult properties are:
 - Low energy density (LHV_{ar} = 10-17 MJ/kg)
 - Hydrophilic
 - Vulnerable to biodegradation
 - Tenacious and fibrous (grinding difficult)
 - Poor "flowability"
 - Heterogeneous

Biomass pre-treatment into bioenergy carriers

- Convert biomass into high-energy density biomass fuels (bioenergy carriers) with favourable logistic and end-use properties
- Deal with the difficult biomass properties at the source
- Allow de-coupling availability and end-use in scale, time and place
- Relate to existing logistic infrastructures (coal, oil, gas)
- Allow conventional trading schemes commodity fuels

Bioenergy carriers play a key role in the bioenergy value chain approach of the EU SETplan instruments EERA and EIBI

Biomass pre-treatment options (1)

- Dry biomass (< 50% moisture)
 - Densification (pellets/briquettes)
 - Torrefaction + densification (biocoal pellets/briquettes)
 - Carbonisation (charcoal)
 - Pyrolysis (bio-oil)
 - Gasification (bioSNG)

Typical product distribution for wood (dry wood basis). Source: www.pyne.co.uk

Mode	Conditions Wt	% Liquid	Char	Gas
Fast	~ 500°C, short hot vapour residence time ~ 1 s	75%	12%	13%
Intermediate	~ 500°C, hot vapour residence time ~ 10-30 s	50%	25%	25%
Slow - Torrefaction	~ 290°C, solids residence time ~30 mins	-	82% solid	18%
Slow - Carbonisation	~ 400°C, long vapour residence time hrs \rightarrow days	30%	35%	35%
Gasification	~ 800°C	5%	10%	85%

Biomass pre-treatment options (2)

- Wet biomass (> 50% moisture)
 - Digestion
 - Hydrothermal processing
 - TORWASH (biocoal)
 - Hydrothermal Carbonisation (charcoal-like product)
 - HydroThermal Upgrading HTU (bio-oil)
 - Hydrothermal Gasification (bioSNG)

Bioenergy carriers – increasingly popular

Scenarios for European pellets consumption

Source: ProPellets analysis 2008 + presentations by Essent, Rotterdam Port & AEBIOI

www.ecn.nl

Bioenergy carriers – ... but what is the preferred option?

- Often no direct competition, different bioenergy carriers may serve different markets
- If direct competition, then supply chain studies show that overall supply chain efficiency is an important cost factor (given high biomass feedstock price)
- Most technologies still in development stage substantial uncertainties

Pyrolysis

- Emphasis on fast pyrolysis maximum liquids production (bio-oil)
- Options:
 - Renewable fuel for boilers, engines and gasifiers
 - Feedstock for the secondary conversion into transport fuels or chemicals
 - Upgrading of lignin fractions in biorefinery concepts

Fast pyrolysis – different reactor concepts considered

Overview of thermal pre-treatment processes for large-scale biomass application – Jaap Kiel

www.ecn.nl

Pyrolysis – development in demonstration stage

Source: IEA Task 34 brochure, 2007

BTG 50 t/d rotatin cone fast pyrolysis pla Malaysia

Crude bio-oil – as bioenergy carrier still some drawback

Typical properties and characteristics of wood derived crude bio-oil

Physical property		Typical value
Moisture content		20-30%
рН		2.5
Specific gravity		1.20
Elemental analysis	С	55-58%
	Н	5 5-7.0%
	0	(35-40%)
	Ν	0-0.2%
	Ash	0-0.2%
HHV as produced		(16-19 M)/kg
Viscosity (40 °C and 25% water)		40-100 cp
Solids (char)		0.1-0.5%
Vacuum distillation residue		up to 50%
Characteristics		
Liquid fuel		
Ready substitution for convention	al fuels in	many stationery appl

Ready substitution for conventional fuels in many stationery application Heating value of 17 MJ/kg at 25% wt. water, is about 40% that of fuel oil/diesel Does not mix with hydrocarbon fuels Not as stable as fossil fuels

Quality needs definition for each application

Source: www.pyne.co.uk

Overview of thermal pre-treatment processes for large-scale biomass application – Jaap Kiel

www.ecn.nl

Bio-oil upgrading

- Co-refining in standard refineries ("drop-in fuels")
- Joint effort in EU FP6-project BioCoup

Torrefaction for upgrading biomass

Process parameters

- Temperature: 200-300°C
- Residence time: 10-30 minutes
- Particle size: < 4 cm</p>
- Absence of oxygen
- Pressure: near atmospheric

Why torrefaction: from biomass/waste to commodity fuel

Woody biomass Agricultural residues Friable and less fibrous 19 - 22 MJ/kg (LHV, ar) Hydrophobic Preserved Homogeneous Torrefaction and Pulverisation Mixed waste Tenacious and fibrous Fuel powder 10 - 17 MJ/kg (LHV, ar) Hydrophilic Vulnerable to biodegradation Heterogeneous

Superior fuel properties:

- Transport, handling, storage
- Milling, feeding
- Gasification, combustion
- Broad feedstock range
- Commodity fuel

Fuel pellets

Grindability of (torrefied) woody biomass

Torrefaction leads to a dramatic decrease in required milling power and increase in milling capacity

www.ecn.nl

Torrefaction of agro residues and mixed wastes

- Agro residues: torrefaction behaviour comparable to woody biomass, determining factor is hemicellulose content
- Good prospects for mixed wastes as well (e.g., RDF, SRF): plastic fractions may become brittle and easily grindable

ECN pelletisation testing

- Torrefied material from pilot-plant subjected to semi-industrial-scale pelletisation tests at CPM:
 - Good quality pellets can be produced *without* additional binder, despite heterogeneous nature of the biomass
 - But case-by-case tuning of the pelletisation conditions (e.g. die type) required
 - Good control of torrefaction conditions essential for proper pelletisation performance

Torrefaction pellets in perspective

Properties (willow, typical values)	unit	Wood	Torrefied Wood	Wood pellets	Torrefaction pellets
Moisture content	wt.%	35	0	10	3
Calorific value (LHV)					
Dry	MJ/kg	17.7	20.4	17.7	20.4
As received	MJ/kg	10.5	20.4	15.6	19.9
Mass density (bulk)	kg/m³	475	230	650	750
Energy density (bulk)	GJ/m ³	5.0	4.7	10.1	14.9
Pellet strength				Good	Very good
Hygroscopic nature		Hydrophilic	Hydrophobic	Hydrophilic	Hydrophobic
Biological degradation		Fast	Slow	Fast	Slow
Handling properties		Normal	Normal	Good	Good

Overview of thermal pre-treatment processes for large-scale biomass application – Jaap Kiel

www.ecn.nl

Torrefaction how difficult can it be?

Overview of thermal pre-treatment processes for large-scale biomass application – Jaap Kiel

Design challenges for torrefaction plants

- Torrefaction process control condensables, exothermicity, product quality control (in view of subsequent densification and end-use)
- Cost CAPEX, OPEX, availability
- Energy efficiency (also in view of CO₂ footprint) → heat integration → use energy content torrefaction gas
- Feedstock flexibility
- Environmental impact (avoid waste streams)
- Plant capacity (5-15 tonne/h dry input)
- Energy densification: torrefaction + pelletisation

Technology example – ECN BO₂-technology

Features:

- Conventional drying and pelletisation
- Compact dedicated moving bed technology with direct heating (no moving parts)
- Heat integration
- High energy efficiency (> 90%)
- Cost effective
- IP is patent protected

Torrefaction reactor concepts – many considered

- Rotating drum (different heating concepts)
- Moving bed
- Belt reactor
- Torbed reactor
- Multiple hearth furnace
- Screw reactor (Auger reactor)

Torrefaction reactor concepts – many limitations

- Derived from drying or pyrolysis technology (e.g. other thermo-chemical regimes)
- Difficult/limited process control (e.g., temperature, residence time distribution)
- Limited efficiency
- Limited fuel flexibility / robustness
- Limited scale-up
- Other observations:
 - Often limited bench-/pilot-scale testing; directly to demo
 - Often limited attention to energy efficiency through heat integration
 - Process control / product quality control underestimated

Torrefaction – a Dutch technology?

- Pioneering role ECN (although building on earlier French experience)
- Several Dutch technology developers, several demo-plants under construction / starting up (ECN, Stramproy Green, Foxcoal, Torrcoal, Topell)
- Dutch Torrefaction Association established

Production of bioSNG – different gasification options

Oxygen-blown	operated at elevated pressure	?
entrained-flow:	no tars in product gas	?
	no methane in product gas	?
	complicated feeding	?
Oxygen-blown CFB:	operated at slightly elevated pressure	?
	methane in product gas	?
	tars and organic sulphur in gas	?
	"limited" char conversion	?
Indirect/allothermal:	methane in product gas	?
	no oxygen plant required	?
	tars and organic sulphur in gas	?
	atmospheric, compression required	?
	Oxygen-blown entrained-flow: Oxygen-blown CFB: Indirect/allothermal:	Oxygen-blown entrained-flow:operated at elevated pressure no tars in product gas no methane in product gas complicated feedingOxygen-blown CFB:operated at slightly elevated pressure methane in product gas tars and organic sulphur in gas "limited" char conversionIndirect/allothermal:methane in product gas no oxygen plant required tars and organic sulphur in gas

Overview of thermal pre-treatment processes for large-scale biomass application – Jaap Kiel

Production of bioSNG – overall conversion efficiency

www.ecn.nl

Two indirect-gasification based bioSNG technologies

- Austria (TUW) / Switzerland (PSI)
 - based on the success of "Güssing"
- Netherlands (ECN)
 - based on the success of OLGA tar removal

Two different indirect gasification technologies

Overview of thermal pre-treatment processes for large-scale biomass application – Jaap Kiel

Production of bioSNG

Production of SNG

Dakotagas (USA): Lurgi coal gasification

Large scale coal based SNG production:

- The gasifier is not suitable for conversion of biomass and/or tars
- The gas cleaning and conditioning applied is operating at pressure levels and sulphur loads being (for the moment) not realistic for biomass based systems
- The Rectisol unit removes to many high-value gas components

R&D needs bioSNG via indirect gasification

Upscaling gasification and tar removal

(Indirect) biomass gasification has still not yet matured:

- Commercial G?ssing gasifier has a capacity of 8 MW_{th}
- Pilot MILENA gasifier has a capacity of 1 MW_{th}
- Goteborg Energi wants 20-100 MW_{th}
- HVC starts with 50 MW_{th}
- E.ON wants 200+ MW_{th}

R&D needs bioSNG via indirect gasification

Demonstrating the critical gas cleaning steps

Cleaning was developed for fossil-fuel based systems:

- The critical gas cleaning systems did not have to handle unsaturated hydrocarbons, tars, organic sulphur, nor were optimised for being able to handle these components
- Demonstration of the critical gas cleaning steps up till now has been limited to lab and pilot scale testing for a limited period of time

R&D needs bioSNG via indirect gasification

Adjusting the methanation catalyst

There is only 1 commercial methanation unit in operation:

- The methanation catalyst was optimised for this specific coal based application and has over the last 25 years hardly been improved
- Optimisation of the catalyst, either in order to be able to handle specific biomass related contaminants in the product gas or in order to produce CH₄ more efficiently will require realistic long-term testing

In conclusion

- General trend towards conversion of biomass into bioenergy carriers to facilitate logistics, trading and end-use
- Rapid growth in application of 1st generation bioenergy carriers (e.g. wood pellets, SNG via digestion)
- Many 2nd generation technologies for biomass upgrading into bioenergy carriers under development, most of them linking to existing infrastructures for coal, oil and gas
- Development of 2nd generation technologies in pilot-to-demo phase with torrefaction maybe closest to large-scale market introduction

Thank you for your attention......

For more information, please contact:

Jaap Kiel

phone+31 224 56 4590e-mailkiel@ecn.nlinternetwww.ecn.nl

