# T. Garbe, R. Dorenkamp, J. Kahrstedt



Fuel Strategies for short and long Distance Transport



# **Agenda**

- Worldwide Challenges and Trends
- Technologies to reach Climate and Energy goals
- Detailed view on Biofuels
- Implementation of sustainable Bio Fuels
- Summary and conclusions





### **Agenda**

- Worldwide Challenges and Trends
- Technologies to reach climate and energy goals

  - Efficiency- Alternative Fuels/Bio Fuels
  - Electromobility
- Detailed view on Biofuels
  - Criteria for evaluation
  - Potential
  - Options
  - Research
- Implementation of sustainable Bio Fuels
   Fuel Specification

  - Infrastructure
  - Customer acceptance
  - Incentives
- Summary and conclusions



# Worldwide Challenges and Trends in the Traffic Sector



**Global Warming** 



**Limited Reserves of fossil Fuels** 



**Megacities** 



**Technical Progress** 



**Industrie Politics** 



**Customer Demand** 



# **Worldwide Challenges and Trends in the Traffic Sector**

| Global Warming                   | Decrease of CO <sub>2</sub> –Emissions until 2050 over 80% necessary to realise 2°C goal          | CO         |
|----------------------------------|---------------------------------------------------------------------------------------------------|------------|
| Limited Reserves of fossil Fuels | Reserves for 30 - 40 years – located mainly in political critical Regions                         |            |
| Megacities                       | customer needs are changing<br>Emission regulations extremly important                            |            |
| Technical<br>Progress            | New technologies become available for commercial use                                              |            |
| Industrie Politics               | Incentivation of engine technologies in China, USA and EU Agricultoral incentivation in SAM, Asia | 700<br>700 |
| Customer demand                  | Significant number of "Early Adopters,,                                                           |            |



# **Goals of a Sustainable Mobility Strategy**





# **Pathways and Basic decisions**





# Technologies to reach the ambicious 2°C Target



\*derived from the political objective (EU and G8+5 countries, part of the Copenhagen Accord 2009) to limit global warming to 2 °C by 2050 (Data based on: IPCC Fourth Assessment Report: Climate Change 2007, partly McKinsey & Company)



# **Decarbonisation of On Road Traffic** CO<sub>2</sub> neutral electricity electric drive CO<sub>2</sub>-**Conventional electricity** neutral mobility **Conventional fuels** combustion engine CO<sub>2</sub>-neutral fuels (liquid, gaseous) Alternative Fuels with enough Feedstock are needed!



# **Detailed View on Biofuels and biofuelled Vehicles**





### Chances and risks of the use of biomass

### Chances



### **Risiks**





Sustainability criteria have to be defined



# **Sustainability Criteria**

- Green House Gas Emissions
- Use of Recources
- Food competition
- Water an Land Use
- Social aspects











# **Detailed View on Biofuels and biofuelled Vehicles**





# The Fuel has got influence on ....





### **Technical** criteria

- compatibility with existing vehicle technology
- blending with mineral based fuels
- heating value
- emissions
- safety
- efficiency in the car
- efficiency influence on driving with other fuels
- fuel and vehicle cost











# **Evaluation of selected BioFuels**

|                           | Biodiesel                                                                          | Ethanol                                                        | Biogas                                                         |
|---------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|
| Potential<br>Availability | Small percentage<br>Diesel Pool                                                    | 10% - 30% increasing by lignocellulose                         | High percentages in actually small markets                     |
| Sustainability            | Open questions                                                                     | Food vs tank discussion Solution: lignocellulose               | Different organic sources,<br>use of waste biomass<br>possible |
| Technical evaluation      | Slightly worse<br>than diesel; material<br>incompatibilities<br>better than Diesel | Slightly worse<br>than gasoline; material<br>incompatibilities | Slightly better<br>than CNG                                    |
| Market<br>situation       | EU: 7%<br>(100%/20% in niches)                                                     | E 10 in Europe Customer still has open questions               | Introduced, 0 – 100%<br>(by certificate)                       |



# **Emissionsziele** Partikelemission NEFZ [g/km] innermotorische Maßnahmen BIN2 BIN5 EU6 EU5 DPF innermotorische Maßnahmen NOx Nachbehandlung NO<sub>x</sub>-Emission NEFZ [g/km]



# Implementation of new Fuels

# What does the customer expect?





Advantages



Clear understanding



infrastructure



Best Quality



**Easy Fuelling** 



Economic reasonable



# **Fulfilling Customers Needs**





### The customer must know about new fuels

# **Actual Fleet test: Diesel regenerativ in Coburg**



- optimized Fuel (B7 + 93)
- maximum quality
- lower emissions
- customer advantages



### **Summary**

- The pilows of a global CO<sub>2</sub> and Energy Strategy are Efficieny, Biofuels and Electrification
- On the mid term, most on road applications need liquid or gaseous fuels
- For these Fuels sustainability criteria have to be defined especially for the production of biomass
- Engine and Fuel have to fit together, so the development of both has to go hand in hand
- The customer must get an offer which is attractive
  - more attractive than solutions based only on fossil fuels
- The conditions for introduction and use of biofuels must be created: infrastructure, quality, customer acceptance



### **Status Evaluation and Conclusions**

#### necessary progress



### to acchieve by

- Research and Development
- Lessons learned
- Demonstrator projects
- Cooperation of all stakeholders
- Public support







# Backup



# **Three Mobility Megatrends**

Reduction of emissions



Imminent gridlock in megacities



Finite nature of fossil fuels





# Long-term CO<sub>2</sub>-Emission reduction targets of the EU until 2050

Average target CO<sub>2</sub>-Emission EU-New Vehicle Fleet for passenger cars and light-duty commercial vehicles





### Mobilität der Zukunft

Zukünftige Mobilität nutzt erneuerbare Energien







Das Auto als Teil der vernetzten Welt

### **Intelligente Energienutzung**



Optimaler Verkehrsfluss

#### **Vernetzte Welt**





