

Adam Brown International Energy Agency

IEA Bioenergy ExCo Workshop 10 May 2011 Helsinki

Technology Roadmap

Biofuels for Transport

The IEA BLUE Map Scenario

- Baseline Scenario business-as-usual; no adoption of new energy and climate policies
- **BLUE Map Scenario** energy-related CO₂-emissions halved by 2050 through CO₂-price and strong support policies
 - 23% of emission savings in the transport sector
 → 20% (2.1 Gt) of this through use of sustainable biofuels (mainly advanced biofuels)
- The BLUE Map Scenario serves as basis for all IEA Technology Roadmaps

IEA Technology Roadmaps

- Roadmaps are intended to:
 - Highlight pathway(s) to reach large scale use of low-carbon technologies, consistent with Energy Technology Perspectives 2010
 - Focus on the key steps over the next 5-10 years, as well as long-term milestones, including:
 - Identify barriers and obstacles and how to overcome these
 - Identify key conversion pathways
 - Key RD&D gaps and how to fill them while ensuring sustainability
 - Identify market requirements and policy needs
 - Define international collaboration needs

For more information: www.iea.org/roadmaps

- IEA Technology Roadmap Biofuels for Transport
 - Developed under consultation of industry, governmental and research institutions as well as NGOs
 - Workshop on feedstock availability and sustainability feeds also into the upcoming Technology Roadmap on Bioenergy for Heat and Power (available early 2012)

Biofuels Contribution to Emissions Reduction

Note: Modal shifts (not included) could contribute an additional 1.8 Gt CO,-eq. of emission reductions.

- Efficiency improvements are the most important low-cost measure to reduce transport emissions
- Biofuels can reduce global transport emissions by 2.1 Gt CO₂-eq. in 2050
- To achieve these reductions, all biofuels must provide considerable life-cycle GHG emission reductions

Overview on Biofuel Technologies

- A broad number of conversion routes exist
- More RD&D is needed to get advanced biofuels to commercial-scale to prove they can meet cost and GHG targets

IEA Biofuel Roadmap: Vision

- Global biofuel supply grows from 2.5 EJ today to 32 EJ in 2050
 - Biofuels share in total transport fuel increases from 2% today, to 27% in 2050
- In the longer-term, diesel/kerosene-type biofuels are particularly important to decarbonise heavy transport modes
- Large-scale deployment of advanced biofuels will be vital to meet the roadmap targets

Global Biomass Potential

- A considerable potential of "low risk" biomass sources has been assessed
- Biomass for biofuel production (65 EJ) could come entirely from residues, wastes, and sustainably grown energy crops

Land Requirements

- Land required to produce biofuels grows from 30 Mha today to 100 Mha in 2050
- In addition, 1 billion tons of residues will be needed (mainly for advanced biofuels)
- Sound policies are required to ensure biofuel production does not compete for land with increasing food demand

GHG-Reduction Potential of Biofuels

- Most biofuels can reduce GHG-emissions compared to gasoline/diesel
- To achieve GHG reductions, biofuels must be produced in an efficient way
- However, uncertainty on the impact of land-use change on GHG balance remains

Impact of Emissions from Land-Use Change

Source: Based on IEA and UNEP analysis and Berndes *et al.*, 2010

- There is a considerable uncertainty on the exact amount of GHG emissions from landuse change
- In the worst case, the impact of land use change can off-set GHG emission reductions
- Land-use changes (direct and indirect) caused by biofuel production must be avoided OECD/IEA 2011

Measures to Reduce Risk of (i)LUC

- Producer side:
 - Efficiency improvements of land-use and biomass conversion
 → yield-improvements and new, high-yielding feedstocks
 - Focus on wastes and residues as feedstock
 - Cascade utilisation of biomass
 - Co-production of energy and food crops (e.g. Integrated Food and Energy Systems)
- Policy side:
 - Adopt land-use zoning and land-use management schemes
 - Introduce sound sustainability criteria for biofuels
 - Promote use of residues and wastes as feedstock, and biofuel production on unused land
 - Support improvement of current iLUC models
- In the long-term, all agricultural and forestry products should be certified, and an overall sustainable land-use management should be adopted

Courtesy:
A. Eisentraut; www.biofuelstp.eu

Sustainability of Biofuels

- Sound policies are needed to ensure biofuels are produced sustainably
- Adopt sound, internationally aligned sustainability certification for biofuels
- Certification schemes should be based on international sustainability criteria (as developed *e.g.* by the Global Bioenergy Partnership, GBEP)
- However, most sustainability issues are relevant to the whole agricultural/ forestry sector
- In the long-term, all agricultural and forestry products should be certified, and an overall sustainable land-use management should be aimed for

Biofuel Production Costs 2010-50

Low-cost scenario

Production costs shown as untaxed retail price

- Most conventional biofuels could become competitive with fossil fuels around 2015-20 in an optimistic scenario
- Advanced biofuels could become competitive around 2030.
- Total expenditure on biofuels in 2010-50 is around USD 11 trillion (i.e. 11% of total fuel costs)

Biofuel Production Costs 2010-50

High-cost scenario

Production costs shown as untaxed retail price

- With a stronger impact of oil prices on feedstock and capital costs, some biofuels might remain slightly more expensive than gasoline/diesel
- The cost difference is less than USD 0.10 after 2040
 - → CO₂ price of USD 50/t would be sufficient to set off the cost difference
- Total expenditure on biofuels is around USD 13 trillion (i.e. 12% of total fuel costs)

Incremental Costs of Biofuels

- Additional expenditure on biofuels is around:
 - USD 810 billion in the high-cost scenario
 - USD 890 billion of <u>fuel cost savings</u> in the lowcost scenario
- Incremental costs compared to use of fossil fuels are in the range of +/-1% of total fuel cost spending in the next 40 years

Barriers and challenges

Economic barriers

- Production costs often not competitive with fossil fuels
 - → Feedstock price volatility is problematic
- High capital costs
 - → Key challenge for advanced biofuels
- High risk related to investments in "unproven" technology

Non-economic barriers

- Uncertainty about sustainability of biofuels
 - → can discourage investments
- Infrastructure compatibility of certain fuels
- Consumer acceptance
- Trade barriers
- Lack of capacities
- Economic incentives should be adjusted over time and aim at encouraging the full competitiveness of biofuels!

Key policy actions

Stability:

Create a long-term policy framework for biofuels.

Innovation and RD&D

- Provide sustained funding, in particular for advanced biofuels RD&D.
- Support research efforts on land availability mapping and biomass potential analysis.

Sustainability:

- Adopt sound, internationally aligned sustainability certification for biofuels.
- Link economic incentives to sustainability performance of biofuels.
- Incentivise use of wastes and residues.

International Collaboration:

- Engage in international collaboration on capacity building and technology transfer.
- Promote the alignment of biofuel and other related policies (agriculture, forestry, rural development).

- IEA Technology Roadmap Biofuels for Transport Available: www.iea.org/roadmaps
- Contact: biofuelroadmap@iea.org
- Forthcoming: IEA Technology Roadmap – Bioenergy for Heat and Power Available early 2012

