Creating a Sustainable Biomass Infrastructure

Green Diesel v	LOOP A Honeywell Company				
Methanol		Veg Oil/ Grease	Hydrogen		
Biodiesel (F	AME)		Green Diesel		
+ Gly	+ Propane				
		Petroleum ULSD	Biodiesel (FAME)	Green Diesel	
Oxygen Content, %		0	11	0	
Specific Gravity		0.84	0.88	0.78	
Sulfur content, ppm		<10	<1	<1	
Heating Value MJ/kg		43	38	44	
Cloud Point, °C		-5	-5 to +15	-30 to -10	
Cetane		40	50-65	70-90	
Lubricity		Baseline	Good	Baseline	
Stability		Baseline	Poor	Baseline	
Ecofining [™] Process to Produce Green Diesel ENI Unit Start-up: 2009					

rels oolCetane Index041	cetane, low density, excellent cloud point.
0 41	Crean Discol is similar
	• Green Diesel is similar
00 52	GTL but with better
00 20	economics.
16 74	 Permits blending low v fuels into ULSD or a
50	reduction in cetane
50 min	ennancing additives.
	00 20 46 74 50 50 min

Towards an Economically Attractive Biofuel

DOE CRADA Goals and Objectives

- <u>Background and Rationale</u> Pyrolysis-derived bio-oils are relatively inexpensive to produce, but there is little market for the resulting crude bio-oil product. Selective hydrotreating will be used to generate higher value biocrude. The national labs with UOP to examine the feasibility of bio-oil upgrading in a petroleum refinery.
- <u>Partners</u> NREL, PNNL
- <u>Goals and Objectives</u> The objective of this project is to upgrade biomass pyrolysis oils to petroleum refinery feedstock in a cost-effective manner.
 - Prepare & characterize various sources of pyrolysis oil
 - Characterize Py Oils from different biomass feedstocks
 - Optimize conversion using hydroprocessing
 - Create database; correlate py oil properties with processability, product properties; define standards
 - Conceptual designs and process model for economic studies
 - LCA of optimized process configuration

Biomass Program's Biorefinery Pathways alignment

Pathway	Project
Milestones	Alignment
4.9/5.9 Demo/ validate direct fuel production from lignin intermediates	Demonstrate fungible fuel production (gasoline/diesel) from several lignocellulosic feedstocks
6.9/7.4 Demo/ validate	Hydroprocess Py Oil
bio-oil production to	to stable oil for
stable intermediate	refinery processing

UOP 4814A-03

Tasks 3-5: Hydroprocessing and Data Base Development

Tasks 3 & 4. Hydroprocessing

- Continuous-flow bench-scale reactor tests have been performed to test catalysts and processing conditions.
- Recovered products are analyzed at PNNL and UOP to determine composition and value

Task 5. Database Development

- An ACCESS database has been developed to manage the data from the pyrolysis and hydroprocessing tests.
- The database provides a tool to analyze the field of data to determine important processing trends and potential process improvements.

UOP 4814A-09

Task 6: Modeling and Economic Analysis

Bio-oil Compositions						
Bio-oil (from mix	Gasoline					
	Min	Max	Typical			
Paraffin, wt%	5.2	9.5	44.2			
Iso-Paraffin, wt%	16.7	24.9				
Olefin, wt%	0.6	0.9	4.1			
Naphthene, wt%	39.6	55.0	6.9			
Aromatic, wt%	9.9	34.6	37.7			
Oxygenate, wt%	0.1	0.8				

Carbon Recovery ~ 50%

UOP 4814A-11

