

The sustainable expansion of sugarcane ethanol in Brazil and the trends for others countries -The experience of ETH Bioenergia

ETH Bioenergy

A new paradigm in the sector

Build a leading Company in bioenergy (ethanol and co-generation of electricity), focused on value creation to the stakeholders.

ETH Bioenergy

Consistent business plan implementation

ETH - Growth plan

Leader in ethanol and energy from biomass

ETH - Acquired mills

Alcídia

Teodoro Sampaio, SP Startup: 1978 Acquisition (93%): Jul 2007 Capacity: 2,1 MM ton

Eldorado

Rio Brilhante, MS Startup: 2006 Acquisition (100%): Mar 2008 Capacity: 3,0 MM ton Planned expansion to 6,0 MM ton

ETH - Greenfield projects

Conquista do Pontal

Mirante do Paranapanema, SP Startup: Oct/2009 Capacity

- Startup: 3,0 MM ton
- Projected: 5,5 MM ton

Santa Luzia

Nova Alvorada do Sul, MS Startup: Oct/2009 Capacity

- Startup: 3,0 MM ton
- Projected: 6,0 MM ton

Rio Claro

Caçu, GO Startup: Aug/2009 Capacity

- Startup: 3,0 MM ton
- Projected: 6,0 MM ton

ETH - New mills (Brenco)

Morro Vermelho

Mineiros, GO Startup: Aug/2010 Capacity: 3,8 MM ton

Costa Rica

Under Construction

Costa Rica, MS Startup: Oct/2011 Capacity: 3,8 MM ton Alto Taquari

Alto Taquari, MT Startup: Oct/2010 Capacity: 3,8 MM ton

Água Emendada

Perolândia, GO Startup: Nov/2011 Capacity: 3,8 MM ton

ETH Bioenergy

Investments

1 US\$ ~ R\$ 1.62

 Market Leader (2012)
 Ethanol Sales Energy Revenues Potential EBITDA 3.0 bi liters 2,700 GWh US\$ 2.5 bi 50%

Brazilian Trends

Macro trends 2010-2020 open great opportunities for energy from biomass

ETH – International Expansion

ETH is aiming to be the key driver in the international expansion of sugar and ethanol.

Main parameters to identify target countries for the international expansion:

- Climate zones and adequate soil for sugarcane cultivation;
- The potential existence of internal demand for sugar, ethanol, and/or competitive tax and logistical cost benefits for exportation to the US, Europe, and Asia;
- Presence of Odebrecht in the country.

World Sugar Cane Around the World – Climate and Soils

World

Ethanol is becoming a reality in the international markets

Countries with projects underway in Africa and Latin America

* Preliminary due diligence underway

ETH – International Expansion

Actions underway in Africa

Mozambique

- Technical and financial viability analysis for the project EcoEnergy (Swedish company), at a hub for ethanol, sugar, and electric energy in Cabo Delgado, with crushed cane capacity of 4MM tons per year.
- Identification of new potential development areas.

Tanzania

 Technical and financial viability analysis for the project EcoEnergy, at a hub for the production of ethanol, sugar, and electric energy in Rufiji, with crushed cane capacity of 4 MM tons per year.

• Libya (Project suspended until the situation there normalizes)

Analysis done in partnership with LIA (Libyan Investment Authority) for:

- ETH/LIA investment greater sugarcane production capacity in Brazil.
- Provision of sugar from ETH to Libya.
- Investment in a sugar refinery by Odebrecht in Libya. Besides the aforementioned countries, Zambia, Kenya, and Uganda are interested in developing ethanol production capabilities, and will be evaluated from a joint perspective with Odebrecht.

ETH – International Expansion

Actions underway in Africa - Angola Investments

- Biocom acquisition study (investment in early stage)
- 40% Odebrecht, 40% Damer, and 20% Sonangol;
- Cacuso Malanje: production of ethanol, sugar, and electric energy;
- Capacity of 2MM tons of crushed cane per year;
- Identification of other areas for new project development

BIOCOM Sugar and Ethanol

Block 16 Oil

Women Mechanical Training Angola

ETHANOL OPPORTUNITIES

Consumer goods

PRODUCTION

Destruction of sensitive biomes Amazon Rainforest Cerrado (savanna) Pantanal (wetlands)

Risks to biodiversity

High Value Conservation Areas Sugarcane expansion pushes agricultural activities into the rainforest

PRODUCTION FACTS Brazilian Biomes

> ETH'S CASE: Nagoya | Cop -10

The Evolution of Legislation

 Agro-ecological zoning for sugarcane

Prohibition of any future sugarcane farming or processing in the Amazon, Pantanal, or in any area of native vegetation

Amazon Rainsforest

2.500 Km

- Defined Areas for Permanent Preservation and Areas of Legal Reserve
- Today in Brazil, 65% of recent sugarcane expansion took place on degraded pastures in the South-Central region

Paris

2.000 Km

GO

MG

МТ

MS

Sugarcane

ETH

Source: NIPE Unicamp, IBGE e CTC Preparation : UNICA

Sugarcane vs. other crops

Expansion of sugarcane production

ETH'S CASE: Use of already cultivated land Arable land used for sugarcane: 1.1%

- In 2017, ethanol doble production will be: 1.5 %
- Diversified agriculture makes Brazil the world's leading exporter of beef, coffee, orange juice, soybeans, and sugar
- Degraded pasture land is being used for sugarcane production

AREA (in million hectares)			%
BRAZIL	851	/0 total	arable
Total arable land	354.8	lotai	land
1. Area cultivated – total	76.7	9%	21.6%
Soy	20.6	2.4%	5.8%
Corn	14.0	1.6%	3.9%
Sugarcane	7.8	0.9%	2.2%
Sugarcane for ethanol	4.0	0.5%	1.1%
2. Pasture	172.3	20.2%	48.6%
3. Available area	105.0	10 /0/	20.00/
(total arable/cultivated area/pasture)	0.601	12.4%	29.0%

2.2% Sugarcane 1.1% Ethanol

Source: IBGE and Conab 2009

PRODUCTION ISSUES
Brazilian Biomes
Land Use
Water Usage
Agrochemicals

- Intensive use of agrochemicals and loss of soil fertility
- Climate change impacting pest control
- Noxious effects on workers' health

ETł

 Monoculture risk: biodiversity impacts and difficulty in pest and disease control

Exclusion of small-scale producers from the market

ETH'S CASE: study of local fauna chain to evaluate how species adapt to new crop introduction

AgrochemicalsMonoculture

- Land UseWater Usage
- Brazilian Biomes

PRODUCTION FACTS

 Establishment of green corridors connecting Permanently Protected Areas and Regularized Legal Reserves

- Small suppliers
- Leased areas
- Competitiveness requires quantity / quality / cost

 Ethanol production process: disposal and environmental impact of by-products and residues

ET

100% of sugarcane processing wastes are reused internally to minimize environmental impacts:

✓ Vinasse, liquid effluent, filter cake → fertirrigation Advantage: replaces use of fertilizers and irrigation

 Bagasse and sugarcane straw - energy cogeneration
 Advantage: self sufficiency in energy and contribution to the country's energy supply

of jobs in the sector

Seasonal employment

- Monoculture
- Agrochemicals
- Water Usage
- PRODUCTION ISSUES Brazilian Biomes Land Use

Inadequate work conditions on the field

Mechanization will eliminate thousands

ETH'S CASE: 70% of planting and 100% of harvesting is mechanized

- Social Responsibility
 Mechanized Harvest
- Wastes
- Monoculture
- Agrochemicals
- Water Usage
- Brazilian BiomesLand Use

PRODUCTION FACTS

Mechanized harvest

- Increases productivity of the harvest by around 20%
- Makes the process safer
- Improves work life quality

Compromisso Nacional

APERFEICOAR AS CONDIÇÕES DE TRABALHO NA CANA-DE-ACÚCAR Signed in June 2009

- Result of **three-party** negotiations:
 - Companies
 - Workers
 - Federal Government

A huge program of training and requalification of cane cutters done by the sugarcane sector

PRODUCTION FACTS Brazilian Biomes Land Use Water Usage Agrochemicals Monoculture Wastes Social Responsibility Mechanized Harvest

- Mechanized -Job Creation

Job Creation

- The sugarcane industry is the largest employer in Brazilian agriculture – 1.2 million workers (2010);
- Strict labor laws in Brazil, helping to improve occupational health conditions

Widespread production of ethanol

vs. Concentrated production of petroleum

In units - 2007

Sector	States	Cities	Jobs	Establishments
Ethanol(*)	25	1042	465236	16829
Petroleum (**)	24	176	73075	1239

Note: (*) includes sugarcane farming and ethanol production.

(**) includes petroleum extraction and derivatives production.

Source: RAIS (2007), PNAD (2007)

ETH'S CASE: Job creation

- Harvest of 2009/10: 3,500 workers
- Harvest of 2010/11: 11,000 workers
- Harvest of 2012/13: 15.000 workers

Energia

- Mechanized Harvest
- Wastes Social Responsibility
- Monoculture
- Agrochemicals
- Water Usage
- Brazilian Biomes Land Use
- PRODUCTION FACTS

PROGRAMA ENERGIA SOCIAL PRODUSTENTABILIDADE LOCA CUATURAL IDUCACIO COMUNITÁRIO UNCON. **HEARINGA** ATTNEDADES METERNACIA TACOUTIVAS

ETH'S CASE: The Social Energy for Local Sustainability Program involves the government and community in investments in the region.

ETH

Social impacts on neighboring communities

alleviates local labor migration

Training and use of local labor

Seasonality of labor balanced with mechanization

Results of 2010's Program

- Socio-environmental diagnostic of the 9 towns where ETH operates;
- Diagnostic of the relationship between ETH and the local communities before implementing the program;
- Hosting of 242 forums in 5 towns, involvement of 4,623 people in the actions of the program ;
- Setting up of 27 training centers with the participation of 508 people;
- 52 sessions of Social Energy Cinema were held with the participation of 1940 people;
- **20 projects** defined with the community.

- AgrochemicsMonoculture
- Agrochemicals
- Water Usage
- PRODUCTION
 ISSUE
 Brazilian Biomes
 Land Use

 International credibility
 International restrictions on Brazilian ethanol

FTI

The Brazilian sugarcane sector is seeking a process for certification

The sugarcane sector has been seeking continual development of sustainable management of its chain:

- Participating in the creation of solid legislation;
- Encouraging producers to invest in the subject;
- Showing itself to be transparent in verifying its sustainable actions.

The Agro Environmental Protocol defines directives for promoting environmental sustainability, including:

- Burning reduction;
- Protecting of streamside woodlands and headwaters;
- Minimizing water usage;
- Minimizing pollution, among other things;
- Auditing annually with a three-party executive group

INTERNATIONAL CREDIBILITY

 Considering the vast quantity of initiatives, the Brazilian industry is actively involved in a specific scheme: the Better Sugarcane Initiative – BSI/BONSUCRO and RFS2.

- BSI defines criteria, indicators, and standards for producing sugarcane, taking into consideration local conditions and circumstances, involving the whole sugarcane chain;
- It promotes measurable improvements in social, environmental, and economic impacts of growing and processing sugarcane;
- System for certification/ external recognition.

ETHANOL OPPORTUNITIES

USES

Transportation (fuel)

Energy

Consumer goods

USES Transportation *Renewable fuel*

Brazilian technology for the production of flex-fueled cars

Potential ethanol demand in

Flex-fueled cars

Projected fleet in millions of vehicles

(Billions of liters)

USES Transportation Ethanol cycle (Kg CO2/1000 I)

The cars emissions are absorbed by the sugarcane

PROCESSING 3

Fermentation and bagasse burning for energy generation

Emissions: 3,604

Use of bagasse to generate electricity and energy surplus

Emissions Avoided: 225

*Assuming 50% mechanized and 50% manual harvest.

Source: Isaias Macedo and Joaquim Seabra Unicamp, 2008

GROWTH

Sugarcane is a natural sponge for carbon gases as it grows

Absorption: 7,650

stations in diesel lorries

TRANSPORTATION Ethanol is transported to gas

ON THE

STREETS

GROWING AND

Tractors, harvesters

and inputs in the field*

Emissions: 2,961

HARVESTING

Car motors burning ethanol

Emissions: 1,520

USES Transportation *Fuel Quality*

ETHANOL OPPORTUNITIES

USES Energy Renewable + Clean

Brazil's green energy matrix

Source: BEN (2009). Elaboration: UNICA

ETH'S CASE Project to earn carbon credits on energy cogeneration with a reduction of 3 million tons of CO₂ in the next 7 years (4 mills)

ETHANOL OPPORTUNITIES

USES

Transportation (fuel)

Energy

Consumer goods

USES Consumer goods Industry

Green Plastics

Improving quality of life with renewable raw materials

Ethanol - Industrial Uses

Sugarcane

Ethanol

Consumer goods with renewable origins

Capture & Sequestration 2,5 t CO₂/ t green PE

BRAZIL

CO₂

\$\$\$

Brazilian ethanol: successful business without government subsidies

2006 - 22% GHG
2020 - 43% GHG

Business

of ethanol : transportation + energy

2010 - US\$ 28 billion
2020 - US\$????

US\$ 10 billion collected in taxes

WORLD ?

Source: BEN (2010). Elaboration: UNICA

Final Considerations Ethanol as a sustainable alternative to the transport energy

Ethanol Contributions in Brazilian Experience

- Environment :
 - Clean and Renewable Fuel
 - Climate Changes Mitigation
 - Biodiversity
- Social Impacts:
 - Largest employer in agriculture
 - Rural Development
- Food Security:
 - Not affected
- Limitations:
 - Climate and Soil conditions
 - International credibility

Carla Pires carla.pires@eth.com www.eth.com.br

Thank you very much for your attention!