♣ NREL National Renewable Energy Laboratory

vation for Our Energy Futu

Pilot-Scale Thermochemical Technologies for Integrated Biorefinery Development – The Thermochemical Conversion Platform

David C. Dayton, Thermochemical Platform Area Leader National Renewable Energy Laboratory National Bioenergy Center Golden, CO USA

IEA Bioenergy Executive Committee Meeting April 25-27, 2007 Golden, CO USA

💭 NREL National Renewable Energy Laboratory

Feedstocks

Forest resources as primary feedstock

- Base design using wood composition
- Scenarios for alternate feedstocks

Costs consistent with forest resources per Billion Ton Study

- \$35 per bone dry ton at plant gate
- Scenarios for other feedstock costs, moisture content, ash content, ...

Integration & Economic Issues Economic

Mixed C3OH+ by-product

- Final separation of C3OH+ mixture done "over the fence line"
- Scenarios for alternate C3OH+ values
- Fraction of chemical feedstock value (target case)Equivalent to ethanol
 - Kerosene value (fraction of gasoline value)

Scenarios – 2005 Dollars

- Total Project Investment
- Average Installation Factors
- Contingency
- Return on Investment
- Loan vs. Equity Financing
- Additional Fossil Fuel
 - fossil fuel for energy deficiency

Conversion Technologies

Indirect gasification

- BCL correlations with decreased methane production
- Scenarios
 - · Costs of catalyst impregnated olivine
 - Gasifier temperature
 - Yields: hydrocarbon, CO2, char, ...

Cleanup & Conditioning

- Tar reforming consistent with "goal case"
 - Includes on-line catalyst regeneration
- Scenarios
 - Reforming conversions
 - Catalyst lifetime
 - Reformer costs (non catalysts)
 - Acid removal costs

Catalytic fuel synthesis

- Specified conversions
 - Kinetic calculations done "off line"
 - High single pass conversions
 - Scenarios
 - Scenarios
 - Single pass yieldsSelectivity to ethanol
 - Alcohol distribution
 - Catalyst lifetime
 - Catalyst specs (sulfur & CO₂ allowability)

Gasification R&D for "\$1.07" NREL National Renewable Energy Laboratory Thermochemical Ethanol Targets

Gas Cleanup and Conditioning - Tar Reforming Catalyst Development

Consolidated tar and light hydrocarbon reforming to reduce capital and operating costs

Tar Reformer Performance - % Conversion

Compound	Current	Guai
Methane (CH ₄)	20%	80%
Ethane (C_2H_6)	90%	99%
Ethene (C ₂ H ₄)	50%	99%
Tars (C10+)	95%	99.9%
Benzene (C_6H_6)	70%	99%
Ammonia (NH ₃)	70%	90%

Advanced Catalysts and Process Improvements for Mixed Alcohol Synthesis

- Increase single pass conversion efficiency (38.5% to 50%)
- Improve selectivity (80% to 90%)
- Improve yields at lower synthesis pressure

Fundamental Gasification Studies

 Technical validation of comparable syngas quality from biorefinery residues and wood residues

NREL National Renewable Energy Laboratory

Advantages

- Universal detection (low and high molecular weight species)
- Real-time monitoring
- Preserves reactive and condensable species
- Rapid screening/fingerprinting
- Large dynamic range (10⁶ to 10⁻¹ ppmv)
- High-pressure, high-temperature system monitoring

Typical Hydrocarbons/Tars Observed		
Molecular Weight	Formula	Chemical Name(s)
15,16	CH₄	methane
26	C_2H_2	acetylene
78	C ₆ H ₆	benzene
91,92	C ₇ H ₈	toluene
94	C6H6O	phenol
104	C₀H₀	styrene
106	C_8H_{10}	(m-, o-, p-) xylene
108	C ₇ H₀O	(m-, o-, p-) cresol
116	C₀H₀	indene
118	C_9H_{10}	indan
128	C ₁₀ H ₈	naphthalene
142	$C_{11}H_{10}$	(1-, 2-) methylnaphthalene
152	$C_{12}H_8$	acenapthylene
154	C ₁₂ H ₁₀	acenaphthene
166	$C_{13}H_{10}$	fluorene
178	C ₁₄ H ₁₀	anthracene, phenanthrene
192	C ₁₅ H ₁₂	(methyl-) anthracenes/phenanthrenes
202	$C_{16}H_{10}$	pyrene/fluoranthene
216	C ₁₇ H ₁₂	methylpyrenes/benzofluorenes
228	$C_{18}H_{12}$	chrysene, benz[a]anthracene,
242	$C_{19}H_{14}$	methylchrysenes, methylbenz[a]anthracenes
252	$C_{20}H_{12}$	perylene, benzo[a]pyrene,
266	$C_{21}H_{14}$	dibenz[a,kl]anthracene,
278	C ₂₂ H ₁₄	dibenz[a,h]anthracene,

MBMS Tar Sampling

Cn-line Analytical Capabilities

- Non-dispersive infrared (NDIR) Analyzer for CH₄ (range: 0-50 vol%)
- NDIR Analyzers for CO₂ and CO (0-50 vol% range)
- Paramagnetic Oxygen Analyzer (range of 0-25 vol%)
- H₂ thermal conductivity analyzer (range of 0-50 vol% and analog inputs for %CO, %CH₄ and %CO₂ to correct the H₂ value)
- Quad Micro Gas Chromatograph 4 channel, on-line GC with 2-3 min cycle time H₂, O₂, N₂, CH₄, CO, CO₂, C₂H₆, C₂H₄, C₂H₂, C₃H₈, and C₄ paraffin's and olefins
- Transportable molecular beam mass spectrometer (TMBMS)

Continuous, real-time monitoring of all gas phase products with particular emphasis on condensible tars and heteroatoms

Feedstock Fuel Variability

	Wood	Corn Stover	BioChem Residue
Proximate Analysis (wt %)			
Moisture	3.74	5.78	0 (63.76)
Ash	0.63	10.69	14.02
Volatiles	82.68	67.35	60.25
Fixed C	12.95	16.18	25.73
Ultimate Analysis (wt%)			
С	51.36	44.0	55.95
Н	6.25	4.68	5.20
N	0.11	0.68	2.27
0	37.89	34.09	22.37
S	0.02	0.08	0.19

NREL TCPDU Syngas Composition (S/B = 1)				
Vol%	Wood	Corn Stover	BioChem Residue	
H ₂	28.1	25.4	?	
со	25.5	23.4	?	
CO ₂	25.2	22.5	?	
CH4	15.3	14.5	?	
C_2H_4	3.7	4.4	?	
Benzene (mg/Nm ³)	6,500	10,000	?	

NREL National Renewable Energy Laboratory NREL Catalyst Development

Objective: Long duration catalyst activity to maintain syngas quality (tar destruction >99%) to meet accepted gas quality standards

Performance requirements

Tar reforming:	$CxHyOz + H_2O(g)? H_2 + xCO$
Water gas shift:	$H_2O + CO? CO_2 + H_2$
Coke gasification:	$C + H_2O(g)$? $COx + H_2$
Steam methane reforming:	$CH_4 + H_2O? CO + 3H_2$

Improve reforming catalyst performance

Develop attrition resistant reforming catalysts Support type/treatment/particle size/surface area Optimize catalyst regeneration Characterize and understand catalyst behavior Catalyst components and promoters Understand/minimize catalyst deactivation Predict pilot scale behavior from MATS behavior Preparation Incipient wetness Calcination Reduction

