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Opportunities for 
Thermochemical Biofuels

Near-term - gasification/mixed alcohol synthesis for 
$1.07 by 2012

§Cost-competitive with High Potential Biofuel Yields
Mid-term (30x30)

§Biorefinery residues in integrated BC/TC plants
§Pyrolysis

Long-term (30x30)
§Selective Thermal Transformation (improve yields and selectivity)

Challenge: Develop thermochemical technologies that are technically 
and economically feasible at the appropriate scale for reasonably 
available biomass resources
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Thermochemical Ethanol via Indirect Gasification and Mixed Alcohol 
Synthesis of Lignocellulosic Biomass

http://www.nrel.gov/docs/fy07osti/41168.pdf (PDF 3.3 MB) NREL-TP-510-
41168
Targeted to appropriate feedstock, level of technologies, and market conditions to 
provide a benchmark thermochemical process for achieving $1.07/gal ethanol by 
2012

Mixed Alcohol Design Report

Feedstocks
Forest resources as primary feedstock

§ Base design using wood composition
§ Scenarios for alternate feedstocks

Costs consistent with forest resources per Billion Ton 
Study

§ $35 per bone dry ton at plant gate
§ Scenarios for other feedstock costs, moisture 

content, ash content, …

Integration & Economic Issues Economic
Mixed C3OH+ by-product
§ Final separation of C3OH+ mixture done “over the 

fence line”
§ Scenarios for alternate C3OH+ values
§ Fraction of chemical feedstock value (target case)
§ Equivalent to ethanol
§ Kerosene value (fraction of gasoline value)

Scenarios – 2005 Dollars
§ Total Project Investment
§ Average Installation Factors
§ Contingency
§ Return on Investment
§ Loan vs. Equity Financing

Additional Fossil Fuel

§ fossil fuel for energy deficiency

Conversion Technologies

Indirect gasification

§ BCL correlations with decreased methane 
production 
§ Scenarios

§ Costs of catalyst impregnated olivine
§ Gasifier temperature
§ Yields: hydrocarbon, CO2, char, …

Cleanup & Conditioning

§ Tar reforming consistent with “goal case”
§ Includes on-line catalyst regeneration

§ Scenarios
§ Reforming conversions
§ Catalyst lifetime
§ Reformer costs (non catalysts)
§ Acid removal costs

Catalytic fuel synthesis

§ Specified conversions
§ Kinetic calculations done “off line”
§ High single pass conversions

§ Scenarios
§ Single pass yields
§ Selectivity to ethanol
§ Alcohol distribution
§ Catalyst lifetime
§ Catalyst specs (sulfur & CO2 allowability)
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Technical Barrier Areas

Feedstock
Interface

Gasification
Gas Cleanup

&
Conditioning

Fuel Synthesis

Products

By-products

Size Reduction
Storage & Handling

De-watering
Drying

Thermal Efficiency
Carbon Conversion
Ash Chemistry
Pressure
Steam/Oxygen

Particulate removal
Catalytic Reforming

Tars
Benzene
Light Hydrocarbons
Methane

S, N, Cl mitigation
CO2 removal
H2/CO adjustment

Separations
Recycle
Selectivity

Methanol
n-Propanol
n-Butanol
n-Pentanol

Ethanol

Gas Cleanup & Conditioning has the largest economic impact

January 9-10, 2007 in Washington, DC,  70 Attendees from Industry, Academia, 
Government, http://www.thermochem.biomass.govtools.us/
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Gasification R&D for “$1.07”
Thermochemical Ethanol Targets

Gas Cleanup and Conditioning – Tar Reforming Catalyst Development

§ Consolidated tar and light hydrocarbon reforming to reduce capital and operating 
costs

Advanced Catalysts and Process Improvements for Mixed Alcohol 
Synthesis
§ Increase single pass conversion efficiency (38.5% to 50%)
§ Improve selectivity (80% to 90%)
§ Improve yields at lower synthesis pressure

Fundamental Gasification Studies
§ Technical validation of comparable syngas quality from biorefinery residues and 

wood residues

Tar Reformer Performance - % Conversion

90%70%Ammonia (NH3)

99%70%Benzene (C6H6)

99.9%95%Tars (C10+)

99%50%Ethene (C2H4)

99%90%Ethane (C2H6)

80%20%Methane (CH4)

GoalCurrentCompound

Core Expertise to Address 
Barriers

Thermochemical Analysis
§ Conceptual integrated thermochem/biochem process
§ Detailed stand-alone thermochemical process

Thermochemical Conversion
§ Feedstock dependent performance and syngas quality

Gas Clean-Up & Conditioning
§ Fluidizable tar reforming catalyst evaluation for IBR applications
§ Catalyst regeneration for maximizing catalyst performance and lifetime

Integration of Operations
§ Reforming catalyst performance integrated with gasifier operations to 

consolidate unit operations for capital cost reductions
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Pilot-scale Biomass 
Thermochemical Conversionq Gasification – feed dependent syngas 

quality, reforming catalyst performance
q Pyrolysis – medium quantity oil 

production, gas and liquid solids filtration, 
real time product optimization

q Gas Clean-Up and Conditioning
q Integrated tar reforming - catalyst lifetime 

& deactivation kinetics
q On-line tar and product analysis

MBMS - Acetylene and Tertiary Tars
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MBMS Tar Sampling

Molecular 
Weight Formula Chemical Name(s) 

15,16 CH4 methane 
26 C2H2 acetylene 
78 C6H6 benzene 

91,92 C7H8 toluene 
94 C6H6O phenol 
104 C8H8 styrene 
106 C8H10 (m-, o-, p-) xylene 
108 C7H8O (m-, o-, p-) cresol 
116 C9H8 indene 
118 C9H10 indan 
128 C10H8 naphthalene 
142 C11H10 (1-, 2-) methylnaphthalene 
152 C12H8 acenapthylene 
154 C12H10 acenaphthene 
166 C13H10 fluorene 
178 C14H10 anthracene, phenanthrene 
192 C15H12 (methyl-) anthracenes/phenanthrenes 
202 C16H10 pyrene/fluoranthene 
216 C17H12 methylpyrenes/benzofluorenes 
228 C18H12 chrysene, benz[a]anthracene, … 
242 C19H14 methylchrysenes, methylbenz[a]anthracenes 
252 C20H12 perylene, benzo[a]pyrene, ... 
266 C21H14 dibenz[a,kl]anthracene, … 
278 C22H14 dibenz[a,h]anthracene, … 

Typical Hydrocarbons/Tars Observed

Advantages
• Universal detection (low and high 

molecular weight species)
• Real-time monitoring 
• Preserves reactive and condensable 

species 
• Rapid screening/fingerprinting 
• Large dynamic range (106 to 10-1 ppmv) 
• High-pressure, high-temperature system 

monitoring 
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On-line Analytical Capabilities

• Non-dispersive infrared (NDIR) Analyzer for CH4
(range: 0-50 vol%)

• NDIR Analyzers for CO2 and CO (0-50 vol% range)

• Paramagnetic Oxygen Analyzer (range of 0-25 vol%)

• H2 thermal conductivity analyzer (range of 0-50 vol% 
and analog inputs for %CO, %CH4 and %CO2 to 
correct the H2 value)

• Quad Micro Gas Chromatograph
4 channel, on-line GC with 2-3 min cycle time
H2, O2, N2, CH4, CO, CO2, C2H6, C2H4, C2H2, 
C3H8, and C4 paraffin's and olefins

• Transportable molecular beam mass spectrometer 
(TMBMS)

Continuous, real-time monitoring of all gas 
phase products withparticular emphasis on 
condensible tars and heteroatoms

NREL 150 kWt Thermochemical 
Process Development Unit
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Real-time data from corn 
stover gasification

Process Data Trends

05/02/2005
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MBMS - Benzene and Secondary Tars
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MBMS - Acetylene and Tertiary Tars
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Feedstock Fuel Variability

22.3734.0937.89O

5.204.686.25H

55.9544.051.36C

2.270.680.11N

0.190.080.02S

Ultimate Analysis (wt%)

25.7316.1812.95Fixed C

60.2567.3582.68Volatiles

14.0210.690.63Ash

0 (63.76)5.783.74Moisture

Proximate Analysis (wt %)

BioChem
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Feedstock Composition

?10,0006,500Benzene
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NREL TCPDU Syngas Composition (S/B = 1)

NREL Catalyst Development

Objective: Long duration catalyst activity to maintain syngas quality (tar
destruction >99%) to meet accepted gas quality standards

Performance requirements
Tar reforming: CxHyOz + H2O(g)? H2 + xCO
Water gas shift: H2O + CO? CO2 + H2

Coke gasification: C + H2O(g) ? COx + H2

Steam methane reforming: CH4 + H2O? CO + 3H2

Improve reforming catalyst performance

Develop attrition resistant reforming catalysts
Support type/treatment/particle size/surface area
Optimize catalyst regeneration

Characterize and understand catalyst behavior
Catalyst components and promoters
Understand/minimize catalyst deactivation
Predict pilot scale behavior from MATS behavior

Preparation
Incipient wetness
Calcination
Reduction
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Tar Reforming: 
Micro – Pilot Scale Evaluation

2” FBR*
• Fluid bed 250 g catalyst
• Kinetic data
• Lifetime data
• TCPDU slipstream
• Online analysis

TCPDU-FSR*
• Fluid bed 50 kg catalyst
• Process data
• Kinetic data
• Lifetime data
• Online analysis

MATS 1*
• Fixed bed 1 g catalyst
•TPR* characterization

Rapid catalyst preparation

MATS 2
• Fixed bed 1 g catalyst
• Tar destruction
• Steam reforming
• TCPDU slipstream

MATS: Microactivity test system
FBR: Fluidized bed reactor
FSR: Full stream reformer
TCPDU: Thermochemical process development unit
TPR: Temperature programmed reaction

S Deactivation of Ni/Al2O3
Catalysts

• S blocks Ni active sites and eliminates sites for H2 adsorption 
and HC cracking

• Little S adsorption on  a-alumina

• Surface-mediated mechanism 

• HT oxidation causes S to penetrate catalyst surface

• S removal depends on temperature and steam content

• Current research to achieve regeneration at process conditions

S

Ni

NiNi

Ni
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Tar Cracking Catalyst Evaluation

Initial NREL 23 Catalyst Deactivation
Wood syngas, Medium space velocity, 825ºC
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Initial NREL 23 Catalyst Deactivation
Corn Stover syngas, Low space velocity, 875ºC
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Technical Goals

§ Deactivation kinetics; Steady-state conversion efficiency
§ Bench and pilot-scale efforts aligned to determine optimized 

reforming catalyst performance
§ Provide technical data for design of regenerating tar reforming 

reactor and refined technoeconomic analyses
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Illustration by Oak Ridge National Lab


