Maintaining soil fertility in biomass for bioenergy production systems

John Raison CSIRO Ecosystem Sciences Energy Transformed Flagship IEA Bioenergy, November 2011

Outline

- Central role of soils in ecosystem function
- How biomass production systems can negatively impact on soil fertility
- The need for active management to protect soil values, and a few examples

Conclusions

Linkages between forest management, soils, and other forest values

Management can degrade soil fertility

- Accelerated erosion
- Disturbance/compaction
- Nutrient depletion
- Acidification
- Biological changes

Bioenergy creates extra challenges

More frequent harvest

- greater soil disturbance
- increase rate of nutrient removal

 Sometimes more complete (foliage and stems) removal of biomass (C and nutrients). How to judiciously manage fertilizer inputs?

Sometimes new fast growing species

Monitoring changes in soil fertility

Broad Soil Indicator	Key Functions	Field Measure
Physical change	root growth aeration water movement	bulk density/soil strength macro-porosity hydraulic conductivity
Chemical change	nutrient supply acidification	SOM, N&P availability pH, base exchange
Erosion risk	many	disturbed soil, cover, infiltration
Pollution	soil biology, toxicity	accumulation of chemicals

Soil physical disturbance

Surface (0-10cm) Soil Bulk Density (Mg m⁻³)

Soil disturbance can lower growth of the regenerating forest

Soil rutting

Rutting depth

Average Soil Moisture: 38 5% w/w

Minimizing soil physical damage

• Using harvesting residues to protect the soil from 'traffic'

Ceasing harvest on wet soils

Machines with low ground pressure

Harvest when soils frozen

Soil organic matter is important

Soil Organic Carbon Cycle

What determines SOC change?

Labile soil C controls rates of nutrient cycling

Mallee eucalypt production system

Mallee eucalypts in WA - annual biomass and nutrient export under 3 - 4 year harvest regimes.

- Biomass 5.9 7.5 t/ha
- Nitrogen 46.7 50.1 kg/ha
- Phosphorus 3.9 4.7 kg/ha
- Calcium 32.2 46.6 kg/ha

Amounts exceed those in wheat cropping

Recovery of nutrients added in Fertilizer is often very low

•Nitrogen – often < 50%

• Phosphorus - low, but high soil retention

Soil acidification after N fertilization

Acidification increases exchangeable soil Aluminium

Depletion of exchangeable soil Calcium

40

Cation (Ca, Mg) replacement by ash recycling

Nutrient Returns

Ash recycling after combustion

- 'Natural' fertilizer treatment
- Ground-based or aerial application
 Cost can be cheaper than landfilling ash
- Precautions avoid spreading ash from

co-firing

Soil Protection is critical

•Soil influences most forest values (biological, social, economic). Off-site effects can be significant (eg. on water)

• Difficult to generalize about the risks created by specific management practices

•Need site-level assessments of risks and impacts, and management guidelines. Reflected in manag. plans

How can we protect soils?

- Undertake 'local' assessments of the risks to soil fertility imposed by biomass production systems
- Develop and apply management prescriptions that mitigate risks of erosion and soil compaction
- Retain nutrient-rich biomass, avoid burning of in-field residues
- Lengthen rotations to reduce [nutrient] in harvested biomass
- Incorporate a legume in the production system if possible
- Judicious use of fertilizers, return ash to site
- Drainage and disturbance of peat will lead to massive C losses!

Adaptive production systems 'Framework'

Tiered Approach to Soil Protection

AIM is to avoid the need for expensive rehabilitation practices.

1.Broadscale auditing for compliance with Codes of Practice (good practice rules/guidelines).

2. Monitoring of soil disturbance classes on selected sites based on risk.

3. R&D on representative important forest types/management systems to calibrate disturbance classes or other simple monitoring methods, and to provide a basis for evaluation of change.

4. Review and improvement ethic.

Energy Transformed Flagship John Raison

Phone: +61 (0)2 62464053 Email: john.raison@csiro.au Web: www.csiro.au/org/EnergyTransformedFlagship

Thank you

Contact Us

Phone: 1300 363 400 or +61 3 9545 2176 Email: Enquiries@csiro.au Web: www.csiro.au

