

Business from technology

Biofuels end-use aspects: Maximizing impact and performance

Future Biomass-based Transport Fuels IEA Bioenergy Workshop 10.5.2011 Nils-Olof Nylund VTT Technical Research Centre of Finland

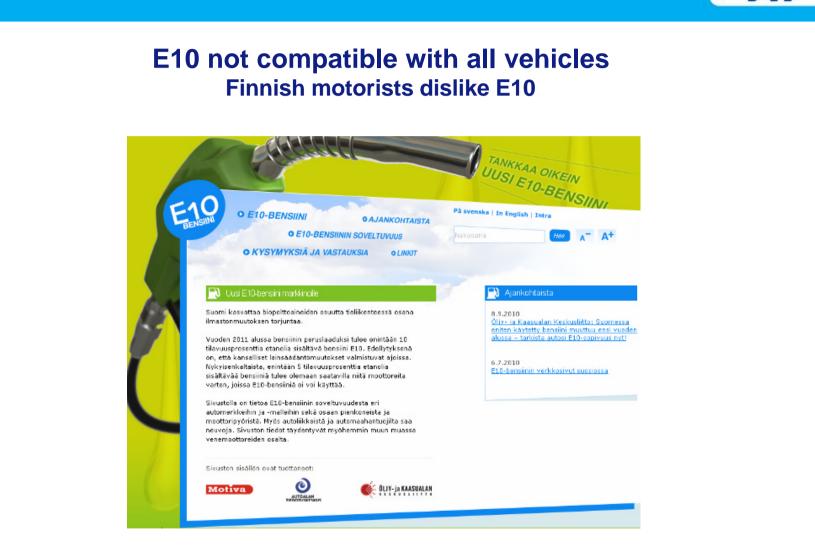
VIT

Outline

- Definitions and alternative ways to use biofuels
- Implementing biofuels in Finland
- Presentation of 3 research/demo projects
 - E85 optimised for cold conditions
 - Paraffinic renewable diesel for buses
 - the tripartite IEA Bus project
- Summary

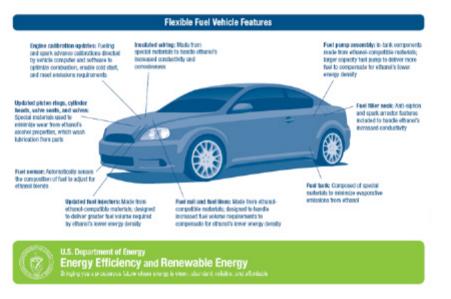
Definitions

- "Blending wall"
 - technical limitations for component concentrations
 - the Fuel Quality Directive 2009/30/EC:
 - maximum 10 % (vol.) of ethanol in petrol (E10)
 - maximum 7 % (vol.) of FAME biodiesel in diesel fuel (B7)
 - both these options render only 6.5 % of renewable energy
 - how to achieve 10 % or even higher energy substitution?


"Drop-in" fuel

- a fuel that is compatible with the existing refuelling structure and existing vehicles even at high concentrations without any need for modifications (e.g. BTL and HVO)
- "Dedicated vehicle"
 - a vehicle that has been adapted to high concentration alternative fuels
 - monofuel, bi-fuel or flex-fuel

VTT TECHNICAL RESEARCH CENTRE OF FINLAND


19/05/2011

4

19/05/2011

A century of FFV technology

U.S. DOE EERE 2007

In 1908, the Ford Model T was designed with a carburetor adjustment that could allow the vehicle to run on ethanol fuel produced by American farmers. Ford's vision was to "build a vehicle affordable to the working family and powered by a fuel that would boost the rural farm economy."

http://www.nesea.org/greencarclub/factsheets_ethanol.pdf

increase the use of the eco-fuel Blogas in public

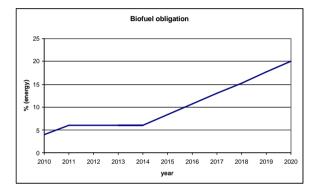
from the traffic and make the Baltic region a better place to live, work and invest in

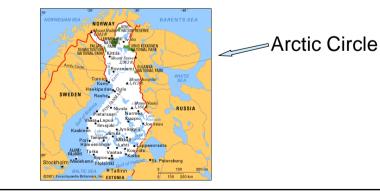
19/05/2011

VIT

Biogas

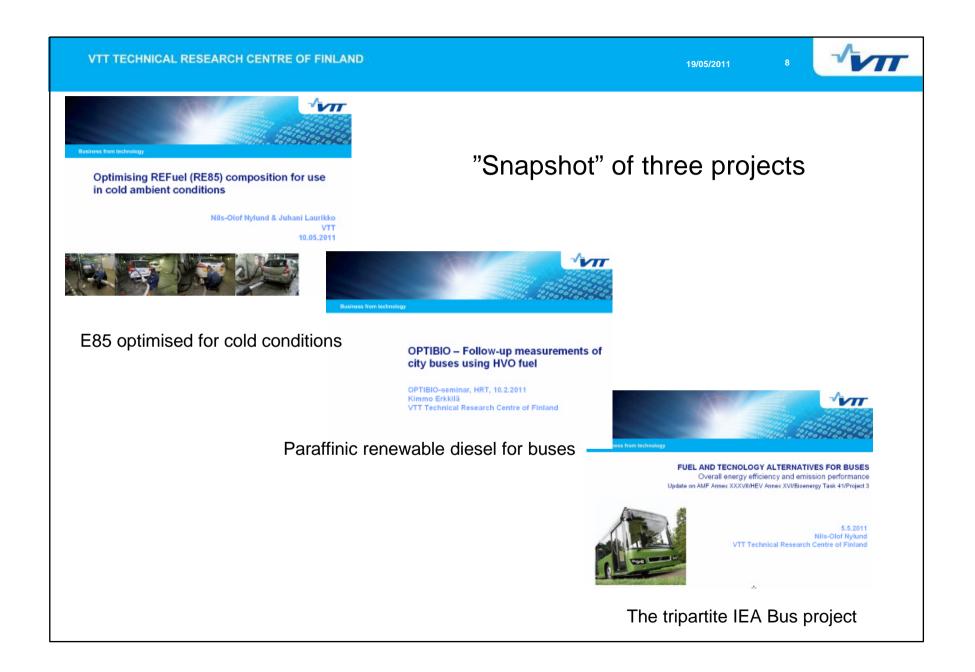
Biodiesel, synthetic biodiesel


Hybrid technology, EVs and fuel cells


Ethanol

Special characteristics of Finland

- Cold climate
- Sparsely populated country and long driving distances
- Biofuels:



- ambitious obligation law meaning that we have to prepare for high volumes of biofuels
- cold winters meaning that we have to secure operability in cold conditions
- we have to evaluate every option and think how and where to best implement biofuels

19/05/2011

Business from technology

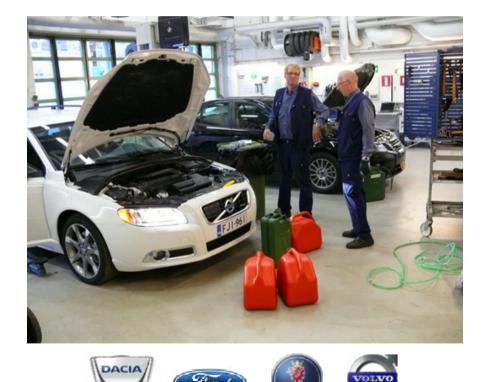
Optimising REFuel (RE85) composition for use in cold ambient conditions

Juhani Laurikko & Nils-Olof Nylund

10.05.2011

Target setting

- Main objective: to choose best option from different RE85 formulations available regarding cold startablity and emissions
- Method: exhaust emission tests from +23°C to -25°C
- Scope of analysis:
 - regulated species (CO, THC, NOx), as well as CO₂ (for fuel consumption) and
 - unregulated species like aldehydes and unburned ethanol
- Additional emphasis on:
 - Startability in low ambient temperatures
 - Effect of *electric block heater* (a standard feature for FFV's)

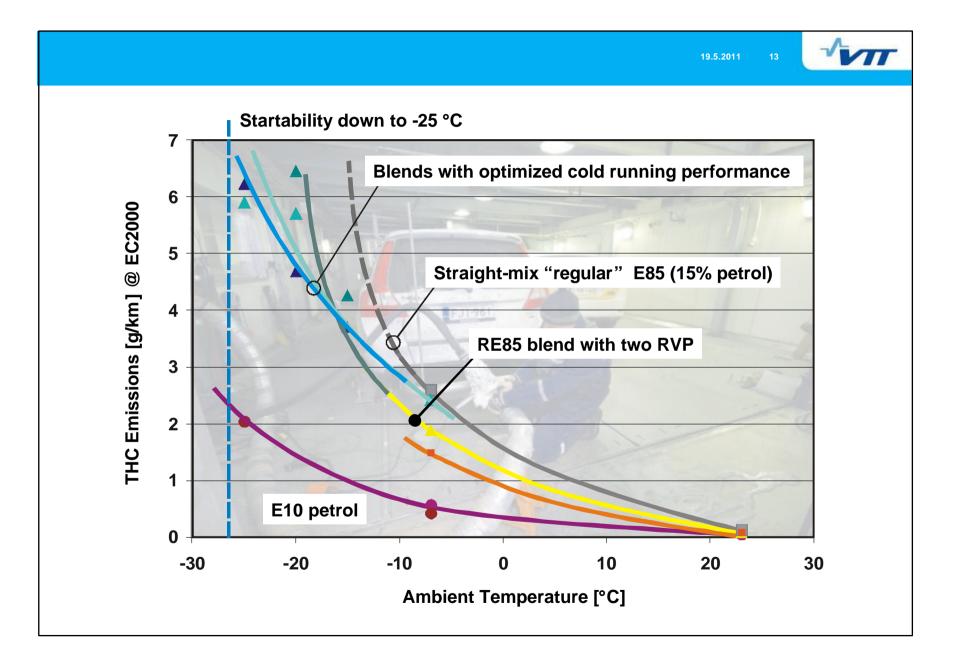

19.5.2011

VI

Tested fuels

- "the basic" E85 • EtOH 85%
 - 95 RON petrol 15%
- 8 different blends, with
 70-85 % bioethanol

 - 15-30% varying contents of ETBE, MTBE, petrol and some specific hydrocarbon species
- "the reference" 95E10 petrol
- volatility (RVP) adjusted separately for normal and low temperatures


19.5.2011

VI

Test matrix

fuel	Ambient temperature					
Pa1	+23	-7	Street and street			-
Pa2	+23	-7				1
Pa3	+23	-7		- term	7.5	
Pa1T			-15	-20	-25	-25BH
Pa5	10 31		-15	-20	-25	
Pa7	E all all	-7	2 /	-20	-25	-25BH
Pa8	+23	-7-7	1.961	-1		
Pa1wt	+23	-7		Decles.		
E10K	+23	-7	1	200		
E10T		-7	1995		-25	1.50
/t=5% wa	ater		1 mail	BH= electr	ic block he	eater 2 hours
total	abou	t 120	tests			
ota	abou	t 120	tests			

...over 6000 data points to analyse!

Business from technology

OPTIBIO – HVO fuels for urban buses

Nils-Olof Nylund VTT Technical Research Centre of Finland

The OPTIBIO project...

The objective was to demonstrate the use of high quality renewable diesel fuel in buses in metropolitan Helsinki for:

- reduced toxic emissions
- increased share of renewable fuels
- The first project in the world involving use of high quality renewable diesel in high concentration
 - 30 % and 100 % renewable paraffinic diesel (HVO) made through hydrotreatment of vegetable oils and animal fats
 - original initiative from the municipal organisations responsible for procurement of bus services
 - example of a public-private partnership
- Testing within a research project spanning more than three years (September 2007 – December 2010)
 - a comprehensive test programme to verify performance as well as actual reductions in emissions levels over time

(NExBTL is the trade mark of Neste Oil's HVO)

..The OBTIBIO project

19/05/2011

- Some 300 buses running on HVO fuels
 - the bulk of the fleet on a 30 % blend
 - 10 vehicles on 100 % HVO
- Paraffinic HVO also depicts the end-use performance of future BTL qualities
- The project was part of the BioRefine technology programme by TEKES, the Finnish Funding Agency for Technology and Innovation, and the initiative for development of 2nd generation biofuels by the Ministry of Employment and the Economy

HRT DESTE OIL PROVENTIN

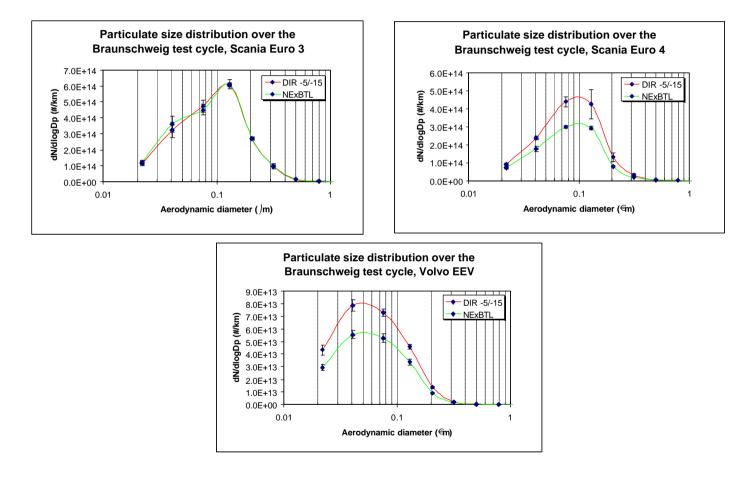
Measurement programme

- Screening
 - 13 vehicle types (11 buses, 2 refuse trucks)
 - Euro II EEV
 - summer and winter grade diesel fuel
 - 0, 30, 50 and 100 % HVO
- Follow-up emission testing
 - 22 vehicles
 - Euro II EEV emission classification
 - annual measurements
- Catalyst testing
 - 4 vehicle types
 - 3 fuel blends
 - wide range of catalytic converters and filters
- Non-regulated emissions testing
 - 3 vehicle types
 - 2 fuel types

19/05/2011

VII

19/05/2011

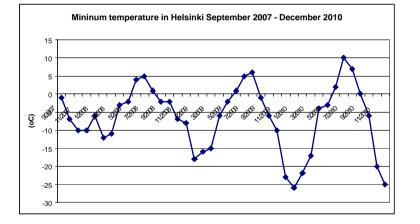

1/VIT

Screening results - Summary

19/05/2011

Particulate numbers

Field test..


- Commenced with some 50 buses on a 30 % HVO blend in September 2007
- 4 new Scania EEV vehicles on 100 % HVO entered the test in March 2008 (in addition 2 new reference vehicles on conventional diesel)
- Expansion to full scale (300 buses) in the autumn of 2008, most of them on a 30 % blend fulfilling the EN590 specifications
- 3 older Euro III level Scania vehicles started operation on 100 % HVO in April 2009
- 3 EEV level Irisbus vehicles started operation on 100 % HVO in February 2010

19/05/2011

20

..Field test

- All in all, the vehicles accumulated some 50 million kilometres, of which some 1.5 million kilometres on 100 % HVO.
- The amounts of fuel were some 22 million litres of blended fuel and 1 million litres of straight HVO.
- No problems whatsoever in the field, not even during the extremely cold 2009/2010 and 2010/2011 winters
- Some indications that more work is needed to enhance the lubricity of neat paraffinic diesel in engines with extremely high injections pressures

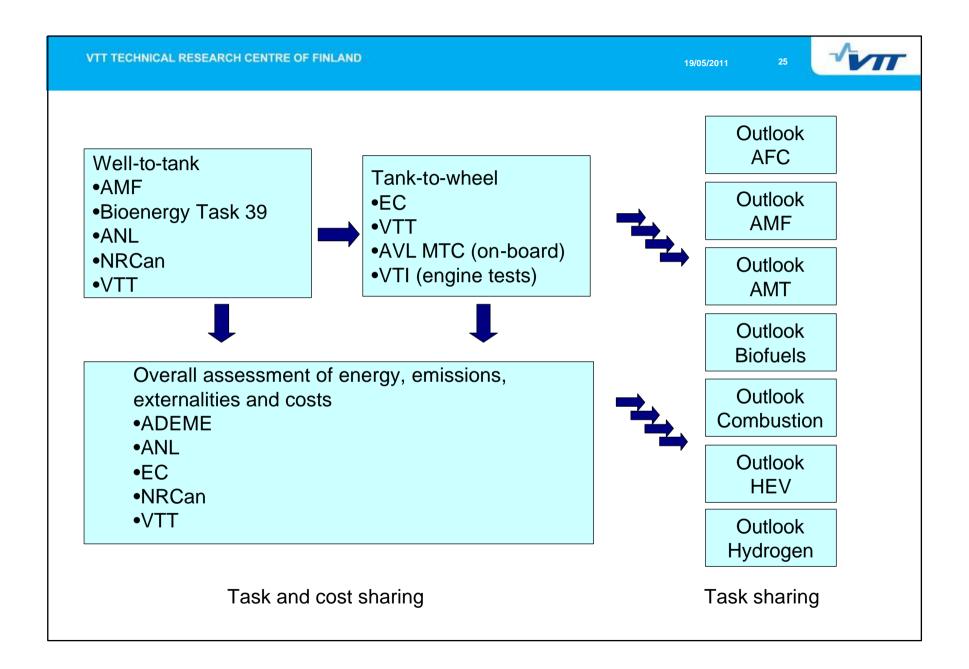
Reports coming up Final report in English (VTT's series of publications)

Conference papers, e.g., SAE 20119172 and 20119239
 (2011 JSAE/SAE International Powertarins, Fuels & Lubricants, Kyoto 30.8 – 2.9.2011)

Business from technology

FUEL AND TECNOLOGY ALTERNATIVES FOR BUSES

Overall energy efficiency and emission performance Update on AMF Annex XXXVII/HEV Annex XVI/Bioenergy Task 41/Project 3



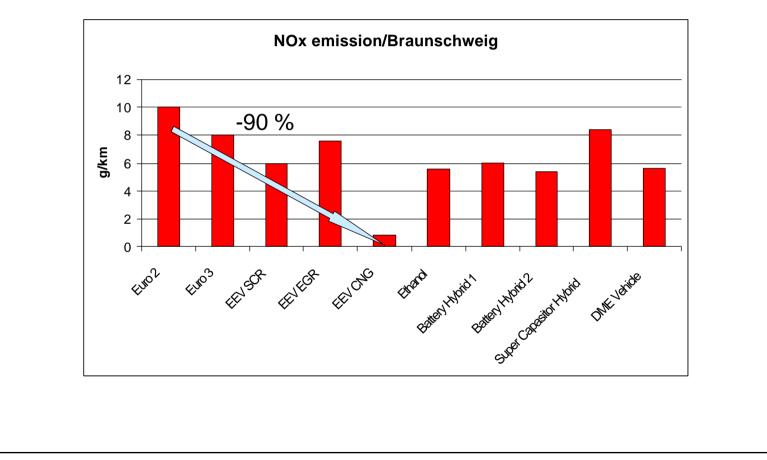
5.5.2011 Nils-Olof Nylund VTT Technical Research Centre of Finland

Bus project objective

- To produce data on the overall energy efficiency, emissions and costs, both direct and indirect costs, of various technology options for buses
- Provide solid IEA sanctioned data for policy- and decision-makers
- Bring together the expertise of various IEA Implementing Agreements:
 - Bioenergy: fuel production
 - AFC & Hydrogen: automotive fuel cells
 - AMF: fuel end-use
 - AMT: light-weight materials
 - Combustion: new combustion systems
 - HEV: hybrid power-trains

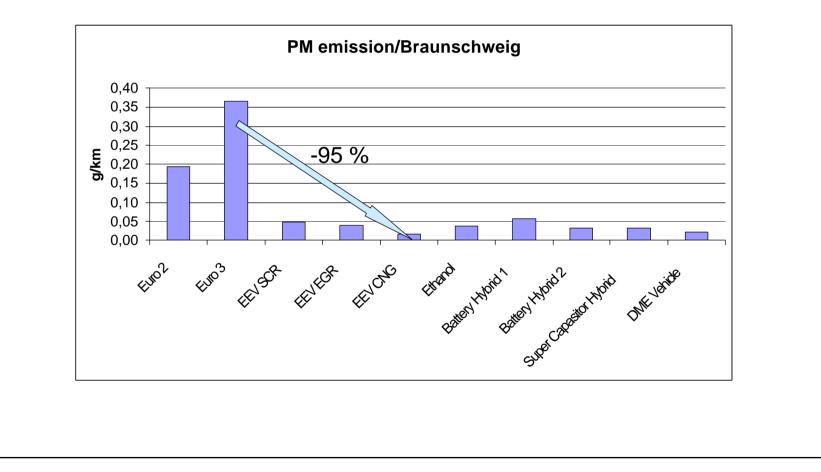
VIT

WTT values analyzed for the following fuels:


GREET (USA)	GHGenius (Canada)	EU Renewable energy directive (RED)		
low-sulfur diesel from conventional petroleum	low-sulfur diesel from conventional petroleum	fossil fuel comparator (EU average)		
natural gas to Shell GTL and SASOL FT diesel	oil sands crude to low-sulfur diesel	remote NG to synthetic diesel (remote plant)		
natural gas to CNG (SI engine)	canola/rapeseed to biodiesel	rapeseed to HVO		
sugar cane and/or grain to ethanol	tallow to biodiesel	rapeseed to FAME		
soybeans to biodiesel (FAME)	soybeans to biodiesel	palm oil to HVO (process not specified)		
soybeans to renewable diesel (NExBTL/HVO)	soybeans to HRD	palm oil to HVO (process with methane capture at oil mill)		
	canola/rapeseed to HRD	palm oil to FAME (process not specified)		
	natural gas to CNG	palm oil to FAME (process with methane capture at oil mill)		
	natural gas to LNG	sugarcane to ethanol		
	landfill gas to CNG	wheat to ethanol (natural gas as process fuel in conventional boiler)		
	landfill gas to LNG	wood to FT-diesel (farmed wood)		
	anaerobic digestor to CNG	wood to FT-diesel (waste wood)		
	anaerobic digestor to LNG	wood to DME (farmed wood)		
	natural gas to FT diesel	wood to DME (waste wood)		
	coal to FT diesel	jatropha to FAME		
	biomass (wood) to FT diesel	biogas from wet manure		
		biogas from organic waste		

27 Vehicles measured so far Diesel Volvo Euro 2 Scania Euro 3 Volvo SCR EEV Scania EGR EEV Solaris/Eaton parallel hybrid Volvo parallel hybrid Golden Dragon hybrid (supercaps, Cummins engine) CNG MAN EEV Ethanol Scania EEV DME Volvo (truck, simulated as a bus) Still to be measured: CNG lveco Euro 6 Iveco hybrid

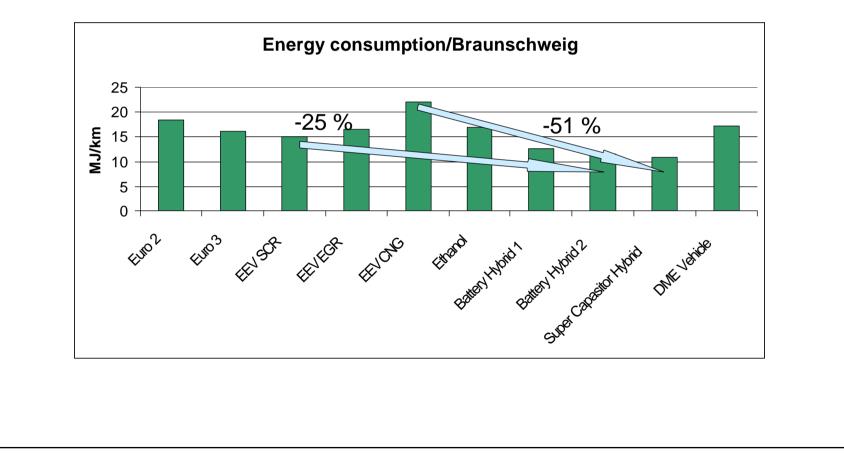
• Full fuel matrix measured with some of the vehicles


·/vm

Effect of vehicle technology - NOx

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

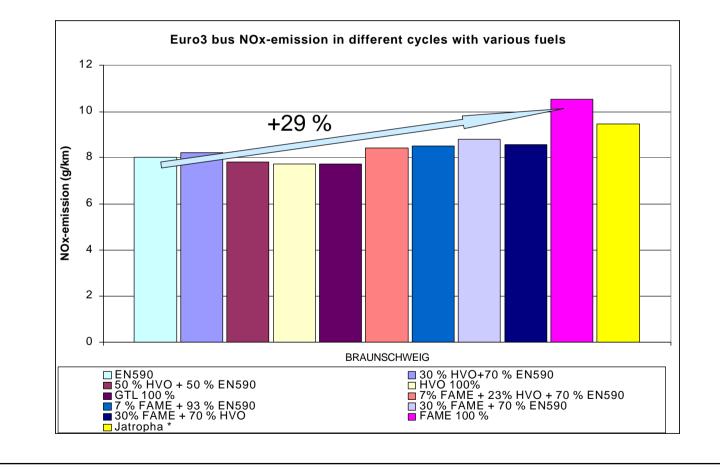
Effect of vehicle technology - PM



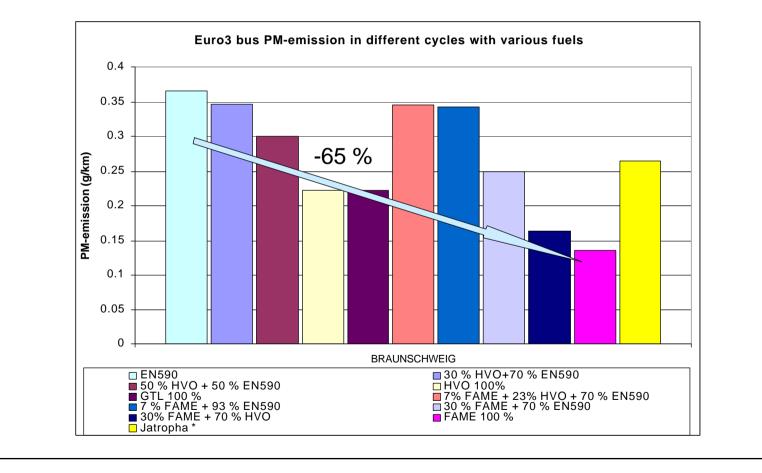
19/05/2011

VII

VTT TECHNICAL RESEARCH CENTRE OF FINLAND


Effect of vehicle technology – energy consumption

VII


VIT

Fuel effects on NOx, Euro 3 technology

VIT

Fuel effects on PM, Euro 3 technology

Environment Environne Canada Canada

Fuel and Technology Alternatives for Buses

Overall energy efficiency and emission performance AMF Annex XXXVII

Environment Canada

Debbie Rosenblatt

Environment Canada (EC) - Update

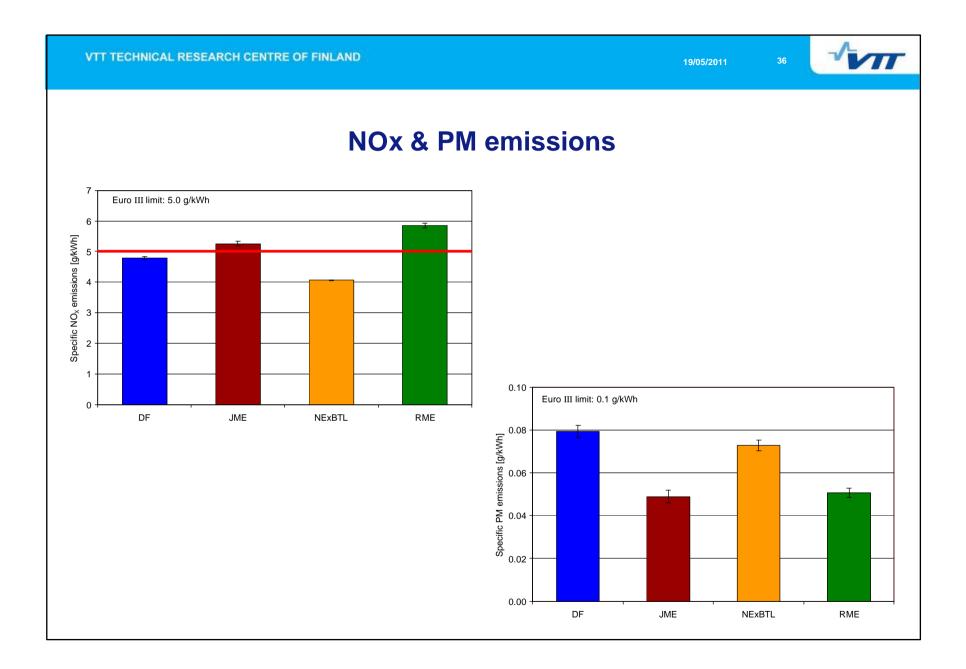
To date EC has completed measurements on 6 buses

Buses were tested with a combination of drive cycles and fuel types:

- Primary cycles: HD UDDS & Manhattan
- Additional cycles: Braunschweig & ADEME/RATP
- Fuel types: commercial Canadian ULSD (ultra low sulphur diesel); oilsands derived commercial ULSD, HVO, and low level blends of FAME (varying feedstocks)

A MY 2002 bus was tested in November 2010 to serve as an average baseline reference

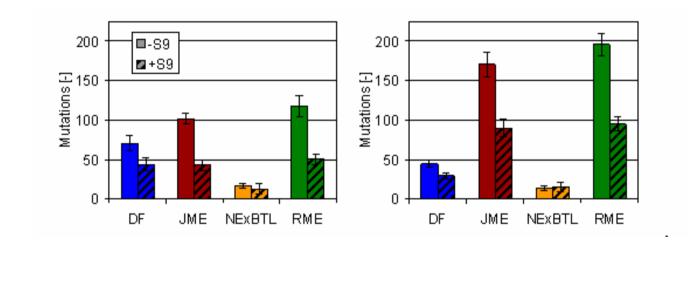
Additional tests will be performed on a second conventional driveline bus meeting US EPA 2010 equipped with SCR technology


All tests included measurement of NO_x , Total PM, CO, HC, CO₂, CH₄, N₂O; particle size distributions were performed on selected tests

Data analysis on-going

Canada

VTT TECHNICAL RESEARCH CENTRE OF FINLAND 19/05/2011 Research Project Report Fuel and Technology Alternatives for Buses -Measurements with NExBTL and Jatropha Oil Methyl Ester in a Euro III Heavy Duty Engine Project Director: Prof. Dr.-Ing. A. Munack Mutagenicity of vTl Particulate Extracts Mercedes Benz OM 906 LA, Euro III, ESC-Test TA98-59 988 TA98+59 18 400 filer Der 200 GTI RMF EA Groenergy Task 29 Rotherdam, 10.01.2008



VTT TECHNICAL RESEARCH CENTRE OF FINLAND

19/05/2011

37

PM mutagenicity – TA98

Extracts (left) Condensates (right)

· vir

Summary

- There are challenges in producing sufficient amounts of sustainable and cost-effective biofuels
- However, do not forget end-use requirements
- Blending of conventional biocomponents only provide limited substitution
- "Drop-in" fuels or alternative dedicated vehicles are needed to really make an impact
- In biofuels development, VTT is looking at production as well end-use, in good cooperation with industry as well as the public sector
- When developing alternative fuels, check all aspects of end-use performance, including unregulated exhaust emissions!