Overview of global experience with biomass co-firing and coal to biomass conversions

Technology, fuel supply, byproducts and regulation, economics

Jan Middelkamp, Marcel Cremers

06 September 2018
Industry consolidation

2,500 energy experts help customers throughout the electrical power industry realize efficient, reliable and clean energy for today and the future.
Global reach – local competence

150 years
350 offices
100 countries
12,500 employees
100,000 customers
Our vision: global impact for a safe and sustainable future

DNV GL Group
HEADQUARTERS: Oslo, Norway
Group President & CEO: Remi Eriksen

MARITIME
HEADQUARTERS: Hamburg, Germany

OIL & GAS
HEADQUARTERS: Oslo, Norway

ENERGY
HEADQUARTERS: Arnhem, the Netherlands

BUSINESS ASSURANCE
HEADQUARTERS: Milan, Italy

DIGITAL SOLUTIONS
HEADQUARTERS: Oslo, Norway

RESEARCH & INNOVATION
HEADQUARTERS: Oslo, Norway
Biomass (co-)firing in power generation
Sustainability targets and CO$_2$ reduction – the role of biomass

POLICY MAKERS AND REGULATORS

(National) targets, incentives

MARKETS

Power market, alternative sustainable technologies, dispatchable power > BIOMASS

UTILITIES

Business case, implementation
Biomass co-firing and full conversion

What is considered high percentage co-firing

▪ Is it >10% ...
▪ or is it >30% ...
▪ or is it >50% ...
▪ or is it >80%

Fuel coal to biomass conversion

Full conversion is the limit

Bio-CCS as a CO₂ sink
Technology and experiences
Each co-firing route has its own (unique) operational requirements and constraints and specific demands on the fuel quality.
Experiences with biomass co-firing and repowering

<table>
<thead>
<tr>
<th>Country</th>
<th>Locations</th>
<th>Fuel Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNITED KINGDOM</td>
<td>Drax, Ferrybridge, Fiddler’s Ferry, Tilbury, Ironbridge, Lynemouth</td>
<td>Various fuels: wood, crops, residues</td>
</tr>
<tr>
<td>DENMARK</td>
<td>Avedore, Amager, Ensted, Studstrup</td>
<td>Wood chips, wood pellets, straw(pellets)</td>
</tr>
<tr>
<td>BELGIUM</td>
<td>Rodenhuize, Les Awirs, Ruien</td>
<td>Mainly wood-based fuels</td>
</tr>
<tr>
<td>THE NETHERLANDS</td>
<td>Geertruidenberg, Rotterdam, Nijmegen, Borssele</td>
<td>Wood pellets, agro- and industrial residues, meat and bone meal</td>
</tr>
<tr>
<td>CANADA</td>
<td>Atikokan, Thunder Bay</td>
<td>Wood pellets, steam explosion pellets</td>
</tr>
</tbody>
</table>
Power plant components affected by biomass (co-)firing

| STORAGE | ▪ Piles
<table>
<thead>
<tr>
<th></th>
<th>▪ Bunkers</th>
</tr>
</thead>
</table>
| LOGISTICS | ▪ Conveyors
| | ▪ Feeders
| | ▪ Mills |
| STEAM PLANT | ▪ Burners
| | ▪ Furnace section
| | ▪ Convection section |
| FLUE GAS | ▪ Flue gas cleaning system
| | ▪ Stack |
Power plant components affected by biomass (co-)firing

Storage
- Dedicated storage or storage on coal yard?
- Dust emissions and explosion risks!
- Odor...

Logistics and Milling
- Coal conveyors suitable?
- Low co-firing: pre-mixing and co-milling
- High co-firing: modified or dedicated mills/classifiers
- Dust explosion risks
- Primary air temperature

Steam Plant (Pulverized Fuel Boiler)
- Particle size > combustion
- Deposition on burners; slagging and fouling
- Soot blowers, water jets, sonic horns, explosive cleaning
- Corrosion risks

Flue Gas Cleaning
- SO₂ and dust (no major issues)
- NOₓ
 - dependent on fuel
 - SCR deactivation
Fuel selection
Fuel selection criteria

<table>
<thead>
<tr>
<th>Low co-firing rate or EFLH</th>
<th>High co-firing rate or EFLH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low investments</td>
<td>Higher investments</td>
</tr>
<tr>
<td>More expensive fuel</td>
<td>Cheaper fuel</td>
</tr>
</tbody>
</table>

ELIGIBILITY OF BIOMASS FUEL
- Meeting subsidy requirements
 - Sustainability criteria
 - Additional requirements

REGULATORY AND PERMIT ASPECTS
- Biomass waste?
 - Emission requirements
Biomass pre-treatment and upgrading

Steam explosion pellets
(courtesy Arbaflame)

Torrefied pellet production
(courtesy Torrcoal)

Wood pellet production
(courtesy Enviva)
Choose your co-firing fuel

<table>
<thead>
<tr>
<th></th>
<th>Wood chips</th>
<th>Wood pellets</th>
<th>Torrefaction pellets</th>
<th>Steam explosion pellets</th>
<th>Coal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture content (% wt)</td>
<td>30 – 45</td>
<td>7 – 10</td>
<td>1 – 5</td>
<td>? - 11</td>
<td>10 – 15</td>
</tr>
<tr>
<td>Calorific value (MJ/kg)</td>
<td>9 – 12</td>
<td>15 – 16</td>
<td>20 – 24</td>
<td>17 – 19</td>
<td>23 – 28</td>
</tr>
<tr>
<td>Volatiles (% db)</td>
<td>70 – 75</td>
<td>70 – 75</td>
<td>55 – 65</td>
<td>70 – 80</td>
<td>15 – 30</td>
</tr>
<tr>
<td>Bulk density (kg/l)</td>
<td>0.2 – 0.25</td>
<td>0.55 – 0.75</td>
<td>0.75 – 0.85</td>
<td>0.65 – 0.78</td>
<td>0.8 – 0.85</td>
</tr>
<tr>
<td>Energy density (GJ/m³)</td>
<td>2.0 – 3.0</td>
<td>7.5 – 10.4</td>
<td>15.0 – 16.7</td>
<td>11.0 – 15.0</td>
<td>18.4 – 23.8</td>
</tr>
<tr>
<td>Dust</td>
<td>Limited</td>
<td>Average</td>
<td>Average/high</td>
<td>Average/high</td>
<td>Limited/average</td>
</tr>
<tr>
<td>Hydroscopic properties</td>
<td>Hydrophilic</td>
<td>Hydrophilic</td>
<td>Hydrophobic</td>
<td>Hydrophobic</td>
<td>Hydrophobic</td>
</tr>
<tr>
<td>Biological degradation</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Potentially</td>
<td>No</td>
</tr>
<tr>
<td>Milling requirements</td>
<td>Special</td>
<td>Classic/special</td>
<td>Classic</td>
<td>Classic</td>
<td>Classic</td>
</tr>
<tr>
<td>Handling properties</td>
<td>Special</td>
<td>Special/easy</td>
<td>Easy</td>
<td>Easy</td>
<td>Easy</td>
</tr>
<tr>
<td>Transport cost</td>
<td>High</td>
<td>Average</td>
<td>Low</td>
<td>Low/Average</td>
<td>Low</td>
</tr>
</tbody>
</table>
Regulatory and by-products
Meeting emission limits

- **Dependent on local regulations and emission standard**
- **ESP/baghouse filter**
 - ash content
 - resistivity
- **SCR**
 - deactivation
 - use of coal fly-ash
- **Co-firing of**
 - clean wood: limited impact on emissions
 - specific types of biomass: potential impact on emissions
- **FGD**
 - low SO₂, high HCl load

Dependent on local regulations and emission standard

ESP/baghouse filter
- ash content
- resistivity

SCR
- deactivation
- use of coal fly-ash

Co-firing of
- clean wood: limited impact on emissions
- specific types of biomass: potential impact on emissions

FGD
- low SO₂, high HCl load
What about the ashes (IEA Task 32 study)

<table>
<thead>
<tr>
<th>Application</th>
<th>Requirements/challenges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disposal/landfill</td>
<td>Minimum standard (Directive 2008/98/EC) and preferred solution in many cases</td>
</tr>
<tr>
<td>Use in forestry</td>
<td>Leaching of heavy metals</td>
</tr>
<tr>
<td>Fertilizer/soil amendment</td>
<td>Leaching of heavy metals, strict legislation</td>
</tr>
<tr>
<td>Addition to compost</td>
<td>Up to 3-5%, REACH registration in EU</td>
</tr>
<tr>
<td>Cement, raw meal constituent</td>
<td>Requirements in bi-lateral contracts</td>
</tr>
<tr>
<td>Cement and concrete fillers</td>
<td>EN 450 standard applicable in EU</td>
</tr>
<tr>
<td>Asphalt concrete filler</td>
<td>Dependent on technical product regulation</td>
</tr>
<tr>
<td>Underground mining</td>
<td>Particularly for bottom ashes</td>
</tr>
<tr>
<td>Civil engineering, road construction</td>
<td>Particularly for bottom ashes</td>
</tr>
</tbody>
</table>
Economics and carbon footprint
Costs of co-firing and repowering (for illustration only)

Imaginary case:
100 MW_{e,\text{r}}
40% efficiency,
5,000 equivalent full load hours

Additional costs from co-firing:
- Fuel costs
- Capital costs
- O&M costs

Revenues from co-firing:
- CO₂ credits
- Subsidies
Case: 100 MWe, 40% efficiency, 5,000 equivalent full load hours

GENERAL DATA

Annual power production: 500,000 MWh/a

Annual fuel consumption: 4.5 PJ/a

INCREASED FUEL COSTS

(co-firing)

<table>
<thead>
<tr>
<th>Coal</th>
<th>Wood pellets:</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 EUR/GJ</td>
<td>9 EUR/GJ</td>
</tr>
</tbody>
</table>

Δ Fuel costs: 6 EUR/GJ

Annual Δ fuel cost: 27 MEUR/a

Δ Specific fuel costs: 54 EUR/MWh
Case: 100 Mwₑ, 40% efficiency, 5,000 equivalent full load hours

CAPITAL EXPENSES

200 kEUR/MWth

installed > 50 MEUR

Capital expenses:

5 MEUR/a

(linear depreciation, 10 years)

O&M COSTS

6% of investment costs:

3 MEUR/a

TOTAL CAPITAL AND O&M

8 MEUR/a

Δ Specific capital and O&M costs:

16 EUR/MWh
Case: 100 Mw\textsubscript{e}, 40% efficiency, 5,000 equivalent full load hours

Revenues

- CO\textsubscript{2} emission reduction: 0.5 Mt/a
- CO\textsubscript{2} @ 10 EUR/t: 5 MEUR/a (current)
- Δ specific costs = -10 EUR/MWh

Δ overall costs = 54 + 16 - 10 = 60 EUR/MWh (8,000 JPY/MWh)

Typical range in detailed business cases: 50 - 80 EUR/MWh \(\rightarrow\) minimum subsidy level required

Co-firing of waste streams:

- Low or negative price
- Limited co-firing rate; additional emission standards
Supply chain (CO₂ per MWh of electricity generation)

Specific case generated with DNV GL BioCase®
Coal: 800 – 1200 kg/MWh

- Forest
- Felling, F’warding
- R’side chipping
- Trucking
- Pelletizer, white
- Trucking
- Silo
- Wood pellet carrier
- Inland waterway
- Silo
- Conveyor belt
- Generation

Chain CO2 emissions (kg/MWh)
Conclusion

- Biomass co-firing and full coal to biomass conversion are proven technology
- Biomass fuels
 - white wood pellets commodity fuel
 - strong developments on processed biomass
 - opportunity fuels and biomass waste streams
- Biomass selection based on required co-firing rate and EFLH
- Impact on emissions to be addressed case by case
- Utilization of ashes requires further development
- Economics: prices of biomass, investments, subsidies, CO₂ price
- Carbon footprint: discussions regarding sequestration in forests

Biomass can provide dispatchable capacity to support intermittent solar and wind power
Thank you for your attention

Jan Middelkamp
jan.middelkamp@dnvgl.com
+31 26 356 2483

www.dnvgl.com