Inter-task project:
Measuring, governing and gaining support for sustainable bioenergy supply chains

Positions, perception and vision of stakeholder groups towards bioenergy: Key Results
IEA Bioenergy Webinar Series - 5 February 2019

Thuy Mai-Moulin & Martin Junginger, Utrecht University
Uwe R. Fritsche, IINAS
with inputs from
Virginia Dale, UTK & Keith Kline, ORNL
Evelyne Thiffault, Laval University
Daniela Thrän, DBFZ

IEA Bioenergy, also known as the Technology Collaboration Programme (TCP) for a Programme of Research, Development and Demonstration on Bioenergy, functions within a Framework created by the International Energy Agency (IEA). Views, findings and publications of IEA Bioenergy do not necessarily represent the views or policies of the IEA Secretariat or of its individual Member countries.
Overall Project: Three Objectives

• **O1:** Provide overview of calculation methods & tools to assess sustainability of various biomass and bioenergy supply chains and discuss needs, possibilities and limitations of a global, uniform/harmonized framework

• **O2:** Compare and assess effectiveness and efficiency of a variety of approaches on sustainability governance of biomass supply chains

• **O3:** Understand positions and underlying motivations of stakeholder groups relative to their perceptions of bioenergy and inform dialogues/discussions to avoid misconceptions about bioenergy

 The webinar will present O3 results.
Objective 3: Approach and Scope

I. Supranational stakeholder case study:
 - Online survey & panel debates on survey results
 - Interviews with supranational stakeholders

II. Dedicated regional case studies:
 - Biogas in Germany
 - Forestry in Canada (Quebec) & US Southeast
 - Agriculture in USA (State of Iowa)
Positions, perception and vision of supranational stakeholders (or stakeholder groups) towards bioenergy

Mai-Moulin, T., Fritsche, U.R., Junginger, M. Full paper submitted for publication to Energy, Sustainability and Society, November 2018
I. Online Survey: Participation

- 199 responses
- Apr 17 - Jun 18

- Biomass producer: 8%
- Biomass user (for energy): 12%
- Biomass user (for other purposes): 6%
- Non-governmental organization: 17%
- Policy maker: 15%
- Academia/Consulting: 35%
- General public: 7%
I. Results: Source of Information – online survey

![Bar chart showing the source of information and the most trusted source in principle.]

- **Actual source of information**
- **Most trusted source (in principle)**

- Colleagues/ friends
- Bioenergy industry
- Academia/ Consulting
- Non-governmental organizations
- Local events/ news
- Journals/ magazines
- Television
- Internet and social media

Note: The chart indicates that Internet and social media are the most commonly used sources, followed by non-governmental organizations and local events/news. However, the least trusted sources are colleagues/friends and academia/consulting.
I. Results: Suitable Feedstocks – online survey

- **Agricultural Harvesting crop residues**
- **Agricultural Processing crop residues**
- **Energy crops, ≤ 3% of agricultural land**
- **Energy crops, ≤ 7% of agricultural land**
- **Energy crops, on marginal or degraded land**
- **Forest residues (from conventional harvest operations)**
- **Forest processing residues (e.g. sawdust, trimming, cut-offs)**
- **Urban wood residues (e.g. construction and demolition debris)**
- **Low-value wood (e.g. low-quality stems harvested from forestry plantation or natural forest that do not meet the market specifications)**
- **High-value wood (e.g. high-quality stems harvested from forestry plantation or natural forest and currently have no other market)**
I. Results: Barriers – online survey

Strongly agree

Neutral

Lack of economic stimulation/market incentives

Unresolved sustainability issues & resulting policy and market uncertainty

Lack of scientific information for better informing policy makers & general public

(16) Biomass producer

(24) Biomass user for energy

(12) Biomass user for other purposes

(33) NGO

(30) Policy maker

(69) Academia & Consulting

(15) General public

IEA Bioenergy www.ieabioenergy.com
I. Results: Challenges – online survey

Strongly agree

- Lack of general societal acceptance
- Undesired environmental impacts cannot be avoided
- No contribution to economic growth

Survey respondents:
- (16) Biomass producer
- (24) Biomass user for energy
- (12) Biomass user for other purposes
- (33) NGO
- (30) Policy maker
- (69) Academia & Consulting
- (15) General public

IEA Bioenergy
I. Results: Drivers – online survey

- Strongly agree
- Neutral
- Strongly disagree

Reduction of greenhouse gas emission
Reduction of environmental impacts
Making profitable businesses based on biomass
Development of a circular economy
Energy security/security of supply

- Biomass producer
- Biomass user (for energy)
- Biomass user (for other purposes)
- NGO
- Policy maker
- Academia & Consulting
- General public

www.ieabioenergy.com
I. Results: How to gain (more) support – online survey

Strongly agree

Sustainability requirements should be mandatory for all biomass types regardless of end use
Current sustainability certification schemes/systems for bioenergy are transparent and effective
Policy makers decisions about bioenergy should be more based on scientific information
I. Summary: Key Points – online survey

• **Awareness**: General public not well aware of bioenergy
• **Source of information**: academia/consulting most trusted but least used
• **Feedstock mobilization**: energy crops on agricultural land not favored, more details on iLUC measurements needed
• **Sectoral views (biochemicals, biomaterials) different**: competition for feedstocks, subsidies for bioenergy

• **Key barriers/drawers, and challenges:**
 • General public acceptance
 • Sustainability requirements (GHG, SFM, social...)
 • Market and policy uncertainty
• **Influence**: role of general public more recognized
I. Summary: Key Points

COMMUNICATION WITH SUPRATIONAL STAKEHOLDERS:

➢ Each supernational stakeholder *has different viewpoints, perceptions and their influence is therefore not similar*

➢ *Most of stakeholders have positive view* (one neutral, two no support) on bioenergy sector

A NUMBER OF AGREED POINTS (Roundtable dialogues & suprational stakeholders):

➢ *Transparency is important*: information sharing, sustainability reporting

➢ *Collaboration between sectors*, understand the complexity

➢ *Policy*: consider various sector focuses & investment confidence

➢ *Influence*: Scientific community more involved in dialogues, providing scientific proof to NGOs and policy makers; *policy makers have power* to make changes
1. Interest vs. Influence

Sketch of stakeholder interest-influence matrix for bioenergy

Based on Sutor et al. (2018) Don’t hate the player, change the rules/ Stakeholder Perceptions and Influence in the German Biogas Sector (under review)
I. Vision ahead

1. Short term

- **Sustainability criteria** (to be improved; mandatory preferred) & measuring (transparent; contextualized indicators)
- **Technological advancement** (processing) & de-risk investment
- **Communication** with external stakeholders for mutual solutions
- Include stakeholders **underrepresented** in discussion (e.g. labor unions...) and highlight **positive** effects (e.g. rural income)
- **Policies** taking broad picture of risks and opportunities; linkages of climate & energy

2. Medium & long term

- **Advanced biofuels**: technologies & deployment
- **Monitoring & measuring sustainability**: flexible on local level, particularly for developing regions
- **Collaboration**: more efficient between sectors using biomass
- **Biomass use**: level playing fields for all sectors

Source: Based in interviews with 11 *supranational* stakeholders/ 15 stakeholders in roundtable dialogues
Regional case studies
II. Case 1: Biogas in Germany

9,000 biogas for CHP plants (4,000 MW):
- (a) municipal & organic waste
- (b) agricultural biomass

Study aims:
- improve understanding and perception of sustainability in the biogas sector
- and consequently to enhance its governance.

SUBJECTS
- Citizens’ initiative
- Organic farmers
- Bioenergy village
- Service providers (e.g. M&O)
- Affected residents

KEY PLAYERS
- Farmers & biogas associations
- Environmental NGOs
- Policy makers
- Academia
- Media

CONTEXT SETTERS
- Utilities
- Investment banks
- Public

INFLUENCE/POWER
- unsupportive
- supportive
- neutral/ indecisive

IEA Bioenergy
II. Case 1: Biogas in Germany

Level of governance and compliance
Scale: 1- fully agree, 2 - agree, 3 - neutral, 4 - disagree, 5 - fully disagree

<table>
<thead>
<tr>
<th></th>
<th>Plant operators</th>
<th>Various stakeholders</th>
</tr>
</thead>
<tbody>
<tr>
<td>...at local level</td>
<td>2.76</td>
<td>3.09</td>
</tr>
<tr>
<td>...at national level</td>
<td>2.34</td>
<td>3.51</td>
</tr>
<tr>
<td>...at international level</td>
<td>2.43</td>
<td>3.90</td>
</tr>
<tr>
<td>...at national level</td>
<td>2.43</td>
<td>3.29</td>
</tr>
<tr>
<td>...at international level</td>
<td>2.90</td>
<td>1.89</td>
</tr>
<tr>
<td>mandatory</td>
<td>2.50</td>
<td>2.79</td>
</tr>
<tr>
<td>voluntary</td>
<td>3.75</td>
<td>2.90</td>
</tr>
<tr>
<td>mix of both</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bioenergy should be governed/regulated

Compliance with all forms of bioenergy sustainability standards should be:

Source: Sutor et al. (under review) Don’t hate the player, change the rules: Stakeholder Perceptions and Influence in the German Biogas Sector
II. Case 2: Forest Biorefinery in La Tuque, Quebec, CA

Complex forest and social ecosystems
• Remote region (>200 km from Quebec main cities)
• Public forests under ecosystem-based management (high level of naturalness)
• Communities historically built on the development of natural resources (hydropower, forestry)
• Active forest industrial network of sawmills and pulpmills
• Presence of First Nations with deep roots into the territory

Source: Thiffault et al. (in preparation)
II. Case 2: Forest Biorefinery, La Tuque, Quebec, CA

Positive economic expectations ranked highest

- Economic - Creation of additional income for...
- Economic - Creation of new business opportunities
- Environmental - Recovering and valuing forest...
- Social - Keeping youth within their community
- Environmental - Production of a renewable and less...
- Economic - New income for the municipality
- Economic - Decrease in the quality of the recreational...
- Economic - Mitigation of climate change
- Environmental - Degradation of biodiversity and...
- Economic - Increased competition for wood fibre access
- Social - Capacity and autonomy building of the...
- Social - Creation of value from local resources
- Social - Increased access and traffic on the territory

Environmental expectations with direct (positive/negative) impacts on their living environment ranked higher than those related to more abstract concepts (biodiversity, climate change)

Source: Thiffault et al. (in preparation)
II. Case 3: Cellulosic-based ethanol, Iowa, the US

+ Biodiversity identified as important by focus groups

[Stakeholders identified priority indicators of sustainability]

- **Social aspects**
 - Risk of catastrophe
 - Effective stakeholder participation
 - Transparency
 - Public opinion
 - Household income
 - Food security
 - Jobs
 - Work days lost due to injury

- **Environmental aspects**
 - Productivity
 - Air quality
 - Biodiversity
 - Greenhouse gases
 - Water quality and quantity
 - Soil Quality

- **Economic aspects**
 - Profit
 - Trade
 - Energy security

II. Case 4: Producing wood based pellets, the SE, US

Background on wood pellet production in the southeastern United States (SE US)
• Pellets <3% of total wood products
• Provide needed rural jobs
• Mitigate climate change by replacing coal & enhance carbon sequestration in forests via improved management

Mail survey
• Sample focused on private owners of forest lands in regions that export pellets to the EU

Results
• Families have diverse reasons for owning forest
• Owners are willing to provide biomass for pellets if:
 – Better prices are offered
 – Technical assistance is provided
 – Risks of fire & disease are reduced
• Land owners expect pellet markets to increase
 – Income for forest owners, regional economic growth
 – Use of best management practices (BMPs)
 – Forest productivity
 – Jobs

Sources: Hodges et al. (In review) Opportunities & attitudes of private forest landowners in supplying woody biomass for renewable energy. Kline et al. 2018. The importance of reference conditions... In World Biomass 2018-2019 (pp 82-86); DCM Productions U.K.
Recommendations

- **Role and modes of communication** in creating trust and confidence among actors (and role of researchers in this process) need to be elaborated more: which role and modes are productive, and on which level (local/regional, national, international)?

- Based on own experiences of the authors, **supranational stakeholders should have more trust in local communities**; if they already have trust in their own processes, practices, certification systems and professionals.

- The extent to which **sustainability standards and respective certification** promote and incentivize continuous improvement should be further investigated.

- **Monitoring data at all levels** is useful for documenting sustainability of bioenergy production and use and should be part of the assessment and communication with stakeholders.
Recommendations

There is no one single approach to assessing progress toward sustainability in any particular setting, but there are common threads. These general attributes include:

• active stakeholder engagement throughout the process
• transparent sharing of information about the social, economic, and environmental costs and benefits
• ongoing monitoring
• and working toward identifying and implementing better practices
Outlook

Based on the InterTask project results, IEA Bioenergy initiated the new Task 45: “Climate and sustainability effects of bioenergy within the broader bioeconomy” http://task45.ieabioenergy.com

Part of future T45 work will be to actively address the “sustainability governance” issue in a collaborative multi-level and multi-stakeholder approach, as indicated below.
Thank you for your attention!

More information:
http://itp-sustainable.ieabioenergy.com/

For comments & contact:
Uwe R. Fritsche, uf@iinas.org
Thuy Mai-Moulin, t.p.t.mai-moulin@uu.nl
Prof. Martin Junginger, h.m.junginger@uu.nl

Disclaimer

Material on US case studies (slides 14-15) is based on work supported by the US Department of Energy under the Bioenergy Technologies Office (BETO), and performed at Oak Ridge National Laboratory under contract number DE-AC05-00OR22725. The views and opinions of the author expressed herein do not necessarily state or reflect those of the United States Government or any other agency. The US Government makes no warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.
III. Questions

You are welcome to ask questions using the chat window

Disclaimer

Material on US case studies (slides 14-15) is based on work supported by the US Department of Energy under the Bioenergy Technologies Office (BETO), and performed at Oak Ridge National Laboratory under contract number DE-AC05-00OR22725. The views and opinions of the author expressed herein do not necessarily state or reflect those of the United States Government or any other agency. The US Government makes no warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.