Potential for cost reduction for advanced biofuels

Adam Brown, Energy Insights
Brussels, 11 February 2020
Project Team

Advisory Group - IEA Bioenergy ExCo

- SGAB Project
 - Lars Waldheim
 - Ingvar Landälv

- IEA Bioenergy Task 39
 - Jack Saddler
 - Jim McMillan
 - Mahmood Ebadian

- CNPEM Brazil
 - Antonio Bonomi
 - Bruno Klein

IEA Bioenergy
www.ieabioenergy.com
Project objectives

- Project under Task 41 of IEA Bioenergy, funded by EC with in kind contributions from Sweden, Netherlands and Germany

- Update and extend the SGAB Cost study to provide estimates of the current costs of producing a selection of relevant novel advanced biofuels;

- Identify the scope for cost reduction for these advanced biofuels in the medium and long term;

- Compare these costs with likely trends in fossil fuel prices, and those of conventional biofuels.

- Examine the consequences for policy measures, including carbon pricing, required to stimulate advanced biofuels production.
Methodology

- Collect/update information from industry and other sources on current costs, and scope for cost reduction
- Normalise and rationalise the data on current costs (capital/operation/feedstock) in final product cost
- Evaluate potential for cost reduction
 - For next x plants based on data information from industry
 - Sensitivity to lower cost capital
 - Extrapolate to large scale deployment
- Compare with future fossil fuel price scenarios with and without policy support
Companies contacted by pathway

<table>
<thead>
<tr>
<th>Pathway</th>
<th>No of Contacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synthetic fuels via gasification</td>
<td>18</td>
</tr>
<tr>
<td>Pyrolysis and upgrading</td>
<td>9</td>
</tr>
<tr>
<td>HTL</td>
<td>3</td>
</tr>
<tr>
<td>Lignin to fuels</td>
<td>3</td>
</tr>
<tr>
<td>HVO and UCOME</td>
<td>7</td>
</tr>
<tr>
<td>Lignocellulosic ethanol via fermentation</td>
<td>14</td>
</tr>
<tr>
<td>Lignocellulosic ethanol by co-fermentation of starch</td>
<td>3</td>
</tr>
<tr>
<td>Fermentation and sugars to hydrocarbons</td>
<td>5</td>
</tr>
<tr>
<td>Alcohols to hydrocarbons</td>
<td>6</td>
</tr>
<tr>
<td>Biogas and biomethane</td>
<td>8</td>
</tr>
<tr>
<td>Other aviation fuels</td>
<td>2</td>
</tr>
<tr>
<td>Power to X</td>
<td>5</td>
</tr>
<tr>
<td>Other processes and contacts</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>89</td>
</tr>
</tbody>
</table>
Current cost estimates

![Bar chart showing production cost EUR/MWh](chart.png)

Production cost EUR/MWh

- Feedstock Costs
- Operating Costs
- Capital
- Total

<table>
<thead>
<tr>
<th>Low</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cellulosic ethanol</td>
<td>Cellulosic ethanol “1 1/2 Gen”</td>
<td>Methanol and methanee-biomass</td>
<td>Methanol and methanee-wastes</td>
<td>FT Liquids – Biomass</td>
<td>FT Liquids – Wastes</td>
<td>Bio-oil - coprocessing</td>
<td>Bio-oil - standalone</td>
<td>HVO</td>
<td>AD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IEA Bioenergy | www.ieabioenergy.com
Current cost estimates

Current fossil fuel price range
(equivalent to 40 - 70 USD/BBL)
Scope for cost reduction – medium term

- Capital and operating cost reductions
 - capital reduced by between 25 and 50% (cellulosic ethanol) and 10 and 20% for thermal processes
 - operating costs reduced by 10 to 20%
 - fuel component assumed constant

- Reduction in capital charge
 - from 10%/15 years to 8%/20 years
Scope for cost reduction – medium term

- Cost reduction 10-27% for capital/operating costs
- Further 5-16 % for improved capital charges
Long term cost reduction potential

- Contribution of advanced biofuels in lower carbon scenarios implies massive ramp up in production
- Over 4000 large scale (200MW output) plants to provide 25 EJ as in long term 2DS scenario
- Learning curve approach used to examine potential impact on costs
Long term cost reduction potential

Graph shows impact of learning for 10 and 100x capacity expansion at different learning rates
Fossil fuel and carbon price trends

Source: IEA WEO 2018

Note:
CPS: Current policy scenario; NPS: New Policy Scenario; SDS: Sustainable Development Scenario
Comparison with fossil fuel and carbon prices from IEA scenarios (2040) shows advanced biofuels can be competitive under these conditions.
Cost gap and equivalent carbon price

TCE = ton CO₂ eq.
Cost not the only issue!

- Cost
- Resource availability
- Market access

Low carbon transport fuels

- Social and other sustainability issues
- GHG impacts
- Infrastructure costs
Overall key conclusions

- Comparison of the estimates of the current costs of production of the range of advanced biofuels with the prices of the fossil fuels that they aim to replace indicates a significant cost gap.

- There is scope for medium term cost reductions of between 20 - 50% due to technical advances and improved financing terms.

- If the medium-term cost reductions discussed above can be achieved the gap will be narrowed but will still be significant for many of the pathways.

- In the longer term, there is further scope for cost reduction due to learning effects, if there is an extensive increase in the production capacity of advanced biofuels. There is the prospect of the technologies being competitive in the context of anticipated fossil and carbon prices.

- Large scale deployment will depend on continuing policy support. First industry will need support during the demonstration and the risky and costly early commercialisation of the technologies, so as to bridge the “valley of death”.

- Continuing strong support will be needed either via strong carbon price signals, or by incentivising low carbon fuels.

- Cost is not the only issue!