

Deployment of BECCS/U - technologies, supply chain setup & policy options

Olle Olsson (SEI), Tero Tynjälä (LUT), Christian Bang (Ea Energy Analyses) & Daniela Thrän (DBFZ/UFZ)

IEA Bioenergy Task 40 webinar, 16 June 2020

The IEA Bioenergy Technology Collaboration Programme (TCP) is organised under the auspices of the International Energy Agency (IEA) but is functionally and legally autonomous. Views, findings and publications of the IEA Bioenergy TCP do not necessarily represent the views or policies of the IEA Secretariat or its individual member countries.

Today's program

- Presentation (16.00-16.30)
 - Overview of the BECCS value chain (capture-transport-storage)
 - Utilization of biogenic CO₂
 - Business models & role of policy
 - Key points moving forward
- Q & A Session (16.30 17.00)

IEA Bioenergy Inter-task Project on BECCS/U

- Negative emissions/CO₂ removal likely needed
- Discussions on BECCS largely focused on long-term issues
- Long-term CC mitigation impact will require near-mid-term deployment
- Where are the opportunities? What are the bottlenecks?

BECCS/U Supply Chain Overview

CO₂ Capture Technologies

- Similar technologies as in fossil fuel CCS, except often smaller plants.
- High moisture and hydrogen content of fuel leads to large flue gas condensers.
- Low-temperature heat could be utilised in CHP plants and/or in CO₂ capture.
- Oxyfuel and Calcium looping technologies may provide additional integration benefits in biorefineries where CaO, O_2 , CO_2 are used also in primary process.
- In CCU integration with hydrogen production by electrolysis, also byproduct O₂ could be utilised for CO₂ capture.

Sustainable sources of biogenic CO₂

- Bioethanol production
 - High CO₂ content, only drying needed for CO₂ capture
 - Most existing large scale BECCS plants
- Anaerobic biogas digesters
 - High CO₂ content (35-45 %)
- Pulp mills / Biorefineries
 - CO₂ content (10-20 %, dry)
 - Specific CO₂ emission 2-2.5 t,CO₂/t,pulp
 - Role of pulp-based products expected to increase
- Waste-to-Energy Plants
 - Typically > 50 % biogenic
 - WtE reduces also landfill gas GHG

The Illinois Industrial Carbon Capture and Storage plant captures CO₂ from Archer Daniel Midland's Decatur corn processing facility and stores it almost a mile and a half underground. Credit: Archer Daniel Midland / CarbonBrief https://www.carbonbrief.org/guest -post-how-use-of-land-in-pursuitof-1-5c-could-impactbiodiversity/adm-beccs

Availability vs. capture cost

FA

Bioenergy

- Limited availability of concentrated CO₂ streams with low capture costs
- BioCO₂ point sources (+cement) are enough for aviation and shipping fuels
- Role of BECCS/U varies greatly in different scenarios (Hepburn et al. 2019, Nature 575, 87-97)

Global renewable CO₂ availability from different sources

Transport of CO₂

Onshore

- Small-scale/pilot project: Tanker (rail or truck)
- Large scale: Pipeline is the most costeffective method

Offshore

FA

Bioenergy

- Ship vs pipeline decision will depend on project-specific factors
- Pipelines more suitable for:
 - Short transport distances
 - Large volumes
 - Long project lifetimes
- Other factors include flexibility, reliability, and environmental considerations

Sequestration of CO₂ - Geological storage

Deep saline formations

- Saline aquifers are plentiful world-wide, both onshore & offshore
- Involves pumping CO₂ deep underground into a layer of porous rock

Depleted oil and gas reservoirs

- Are prime locations for injecting CO₂ as the pore space that was once occupied by oil or gas can now be filled with the CO₂
- Geologists are familiar with the sites and they have already proven that they can contain oil or gas for millions of years

Image source: Clean Air Task Force

Utilisation of CO₂ - example of CO₂ EOR

Enhanced oil recovery (EOR) - today

- Injection of CO₂ into an oil well increases recovery rates significantly
- While some of the CO_2 returns to the surface with the oil, a portion of the injected CO_2 is sequestered permanently.
- As of 2017, nearly 100 CO₂ EOR projects globally, producing nearly half a million barrels per day (IEA database)
- Currently, the vast majority of CO₂ utilized in CO₂ EOR comes from nearby natural sources

Bioenergy based CO₂ EOR – opportunity for tomorrow

- If the CO₂ utilised in CO₂ EOR instead was captured from a biomass based power plant, this would greatly reduce the CO₂ footprint of the additonal oil produced
- Gives rise to numerous discussion points

Utilisation of biogenic CO₂ - BECCU value chain

operators when CO₂ sold for₁CCU/S

Utilisation of biogenic CO₂ - pathways

material

energetic

production of synthetic hydrocarbon fuels, e.g.

- diesel
- jet fuel
- methane for grid injection

Forbes/Getty Images

Power-to-X for sector coupling

Power

to

Source: EWE Netz. Published in Audi AG/ Reinhard Otten. 2014. The first industrial PtG plant -Audi e-gas as driver for the energy turnaround. http://www.cedec.com/fil es/default/8-2014-05-27cedec-gas-day-reinhardotten-audi-ag.pdf

FA

Bioenergy

Audi Power-to-Gas pilot plant in Werlte, GE: Electricity input: 6 MW H2 production: 1.300 m³/h CCU: 2 800 t CO₂/a SNG production: 300 m³/h

Key messages

CCU is a key set of technologies for a resource-efficient economy

- CO₂ from renewable sources extends the resource base
- CCU is a form of waste treatment that contributes to a circular economy
- CCU generates additional value and can drive innovative business cases, e.g. new market segments for bioenergy plants

... but there are limitations

- Large CO₂ volume flows are required for a cost-efficient CCU process
 → Large biomass (co-)firing plants are advantageous or pooling of small-scale CO₂ sources in decentralized systems
- Even under optimistic long-term assumptions, CCU could only contribute to 6 % reduction of anthropogenic emissions (Naims et al. 2015)

Role of public policy: innovation support

• Need to climb the TRL ladder and scale up

 Pilot & demonstration facilities risky & expensive public financing important!

TRL-9	Full-Scale Commercial Deployment
TRL-8	Sub-Scale Commercial Demonstration Plant
TRL-7	Pilot Plant
TRL-6	Component Prototype Demonstration
TRL-5	Component Prototype Development
TRL-4	Laboratory Component Testing
TRL-3	Analytical, "Proof of Concept"
TRL-2	Application Formulated
TRL-1	Basic Principles Observed

(Adapted from Global CCS Institute, 2009)

Role of public policy: create opportunities to generate revenue from CDR

- Voluntary carbon offsets welcome & valuable but not sufficient
- Public policy measures needed
- Different alternatives discussed, planned or implemented
 - Inclusion in ETS (EU)?
 - Public procurement of CDR (Sweden)?
 - Tax credits (45Q in US)

Key points moving forward

- Close the fossil CCS/BECCS policy gap
- How to develop BECCU for maximum mitigation benefits?
- Bio-EOR & "negative emission fossil fuels" raise difficult questions

Thank you!

IEA Bioenergy Task 40 - deployment of biobased value chains

Task40.ieabioenergy.com

