Trends and Drivers in Alternative Thermal Conversion of Waste

Task 36 - Material and Energy Valorisation of Waste in a Circular Economy

Dieter Stapf, Karlsruhe Institute of Technology (KIT)

Webinar, September 16, 2020
Typical Composition* of Residual Household Waste in Developed Countries

WEEE: Waste Electrical and Electronic Equipment

State-of-the-art Waste Incineration Technology:
Wast-to-Energy plant converting collected untreated waste to heat and power

IEA Bioenergy T36 webinar on „Valorization of fly ash from Waste-to-Energy plants“, October 7, 12:00 CEST
The EU Waste Hierarchy

• In the context of climate protection, environmental protection and the concept of a Circular Economy
European Waste Treatment Status in 2014

Policy Related to Landfilling* in Selected EU Countries

- Landfilling of untreated (combustible) waste to be terminated
 - Long lasting expiry periods
- Insufficient (or even no) incineration capacities in some countries
 - Growing waste produced, incineration capacities fully utilized
- Low acceptance of incineration in some countries

Underlying Legal Boundary Conditions

• Target „Recycling quotas“ 2030 (wt-%):

Plastic waste: 55 %
60 % Self-commitment Plastics Europe

MSW: 60 % Council, May 22, 2018

Plastics in packaging waste: 63 % (2022) Packaging law, Germany, Jan. 2019

Additional plastic waste recycling capacities required in EU until 2030: 11 Mt/a
Plastics Production and Plastic Waste Generation

<table>
<thead>
<tr>
<th></th>
<th>EU 28+2*</th>
<th>Germany**</th>
<th>Italy***</th>
<th>Sweden****</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plastics production</td>
<td>61.8</td>
<td>19.9</td>
<td>9.0(^{a})</td>
<td>1.3</td>
</tr>
<tr>
<td>Plastics consumption</td>
<td>51.2</td>
<td>12.6</td>
<td>7.1</td>
<td>n/a</td>
</tr>
<tr>
<td>Plastic waste</td>
<td>29.1</td>
<td>6.2</td>
<td>4.5</td>
<td>1.7</td>
</tr>
<tr>
<td>- Landfill</td>
<td>7.2</td>
<td>< 0.1</td>
<td>1.6</td>
<td>< 0.1</td>
</tr>
<tr>
<td>- Energy recovery</td>
<td>12.4</td>
<td>3.2</td>
<td>1.5</td>
<td>1.4</td>
</tr>
<tr>
<td>- Recycling</td>
<td>9.4 (export 1.8)</td>
<td>2.9 (export: 0.6)</td>
<td>1.4</td>
<td>0.1</td>
</tr>
</tbody>
</table>

\(^{a}\) Estimated

Collection and Sorting of Lightweight Packaging Waste

Recycling Processes for Mixed Waste and their Key Products

Physical processes
- Recovered component

Chemical processes
- New material

Mechanical sorting

Solvent extraction

Solvolysis
- Building blocks

Thermochemical conversion
- Gasification
 - Syngas
- Pyrolysis
 - Pygas / -oil

- Mixed wastes
- Pure plastics,
- Poly-condensates
- Mixed wastes, composite materials
Thermochemical Recycling of Plastic Wastes

Commercial industrial scale Waste-to-Chemicals operations:
- Showa Denko, Kawasaki, Japan (Ammonia from separately collected packaging waste)
- Enerkem, Edmonton, Canada (Methanol / Ethanol from RDF)
 + W2C project, Rotterdam
- Nippon Steel, Hirohata (secondary raw materials by waste tire pyrolysis)

Historical (Shut down):
- SVZ, Schwarze Pumpe, Germany (RDF, sewage sludge, packaging waste to Methanol)
- Krupp Ude, Berrenrath, Germany (RDF to Methanol)
Industrial Capital Investment Projects: Chemical recycling of plastic wastes

- Plastic Energy, London, UK
 - Almeria, Sevilla, ES

- Recycling Technologies, Swindon, UK
 - RT7000 project, Perthshire, Scotland

- Sabic
 - Cooperation with Plastic Energy, Geleen, NL

- LyondelBasell
 - MoReTec-plant, Ferrara, IT

- BASF
 - Cooperation with Quantafuel, Oslo, NOR
CEMEX Cement Plant at Rüdersdorf, Germany: Waste gasification (CFB) to generate calciner heat

RHW Pyrolysis Plant at Burgau, Germany

CHP Production from Waste

- Started up in 1983
- Final capacity of 26 kt/a
- Shut down in Dec 2015
Process Chain of the Thermochemical Recycling of Waste to Secondary (Chemical) Feedstock
Waste-to-Chemicals Process Chain
Case: Gasification of RHW to Syngas for Methanol Production

pretreatment

conversion

upgrading

Household collection waste (RHW)

Gasifier feedstock (RDF, SRF)

Raw syngas

On-spec feed to methanol synthesis

- CO$_2$, CO, H$_2$, CH$_4$,
- tar components,
- H$_2$S, HCl, Hg, ...

H$_2$:CO = 2:1,
- tar free,
- contaminants concentrations below 0.1ppm, ...
Mechanical Pretreatment of Residual Household Waste RHW

<table>
<thead>
<tr>
<th>Parameter</th>
<th>RHW</th>
<th>RDF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture content wt-%</td>
<td>23.8</td>
<td>21.8</td>
</tr>
<tr>
<td>Combustibles wt-%</td>
<td>47.6</td>
<td>64.4</td>
</tr>
<tr>
<td>Ash content wt-%</td>
<td>28.6</td>
<td>13.8</td>
</tr>
<tr>
<td>Lower heating value MJ/kg</td>
<td>10.9</td>
<td>15.0</td>
</tr>
</tbody>
</table>

Syngas Upgrading Process Chain

- Process water
- Fluidized Bed Gasifier
- Gas cooling
- Tar Removal
- Filtration
- Water-Gas Shift
- Heat-Exchanger
- Gas Scrubbing
- Secondary Filter (Activated carbon)
- Compression

Particles:
- Sulphurous components
- Nitrogenous components
- Halogenes
- CH₄
- Waste Water
- CO₂

Methanol synthesis
Example of Material Flows in CFB-Gasification of Residual Household Waste to Methanol Syngas

Basic Flow Scheme of Pyrolysis Applied to Waste

Air

Feedstock → Pyrolysis → Aqueous Liquids → Combustion → Exhaust Gas

Pyrolysis → Gases → Condensation

Condensation → Organic Liquids

Solids
Example of Material Flows in Rotary Kiln Pyrolysis of Residual Household Waste

Economics of Selected Waste-to-Chemicals Value Chains**

<table>
<thead>
<tr>
<th>Process</th>
<th>Pretreatment [€/t_{RHW}]</th>
<th>Conversion [€/t_{RHW}]</th>
<th>Upgrading [€/t_{RHW}]</th>
<th>Total processing cost [€/t_{RHW}]</th>
<th>Revenues* [€/t_{RHW}]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gasification</td>
<td>21</td>
<td>86</td>
<td>105</td>
<td>212</td>
<td>- 68</td>
</tr>
<tr>
<td>Pyrolysis</td>
<td>21</td>
<td>162</td>
<td>0</td>
<td>183</td>
<td>- 86</td>
</tr>
</tbody>
</table>

*) Syngas @ 200 €/t
Naphtha @ 500 €/t

**) Conversion unit size: ca. 100 MW; ca. 25 t/h of pretreated household waste (RDF)

Capital investment cost estimate accuracy: ± 30%
Process Overview: Economies and Risk

Technology Readiness Level TRL

<table>
<thead>
<tr>
<th>Process</th>
<th>Pretreatment feedstock</th>
<th>Conversion</th>
<th>Upgrading Rawgas / crude</th>
<th>Product utilization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gasification</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>Methanol Synthesis</td>
</tr>
<tr>
<td>Pyrolysis</td>
<td>9</td>
<td>5 - 6</td>
<td>3</td>
<td>Steamcracker</td>
</tr>
</tbody>
</table>

- TRL 3: applied research
- TRL 5: large scale prototype
- TRL 6: prototype system
- TRL 7: demonstration system
- TRL 8: first of a kind commercial system
- TRL 9: full commercial application

Process Overview: Economies and Risk

Technology Readiness Level TRL

<table>
<thead>
<tr>
<th>Process</th>
<th>Pretreatment feedstock</th>
<th>Conversion</th>
<th>Upgrading Rawgas / crude</th>
<th>Product utilization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gasification</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>Methanol Synthesis</td>
</tr>
<tr>
<td>Pyrolysis</td>
<td>9</td>
<td>5 - 6</td>
<td>3</td>
<td>Steamcracker</td>
</tr>
</tbody>
</table>

- TRL 3: applied research
- TRL 5: large scale prototype
- TRL 6: prototype system
- TRL 7: demonstration system
- TRL 8: first of a kind commercial system
- TRL 9: full commercial application

Trends and Drivers in Alternative Thermal Conversion of Waste - Conclusions

• Pyrolysis and gasification thermally separate mixed wastes to generate secondary feedstocks for industrial processing
• Mostly not competitive to waste incineration when focused on power and heat production from waste
• Chemical recycling:
 • Competitiveness results from associated product revenues
 • Complements mechanical sorting
 • Maximizes recycling rates and minimizes greenhouse gas emissions
• Targeted R&D is needed in parallel with the development of policy incentives to allow these technologies to emerge
Report announcement

T36
Trends and Drivers in Alternative Thermal Conversion of Waste
Dieter Stapf, Giovanni Ciceri, Inge Johansson
www.ieabioenergy.com/iea-publications/
Dieter Stapf
Karlsruhe Institute of Technology (KIT),
Germany
dieter.stapf@kit.edu

www.ieabioenergy.com