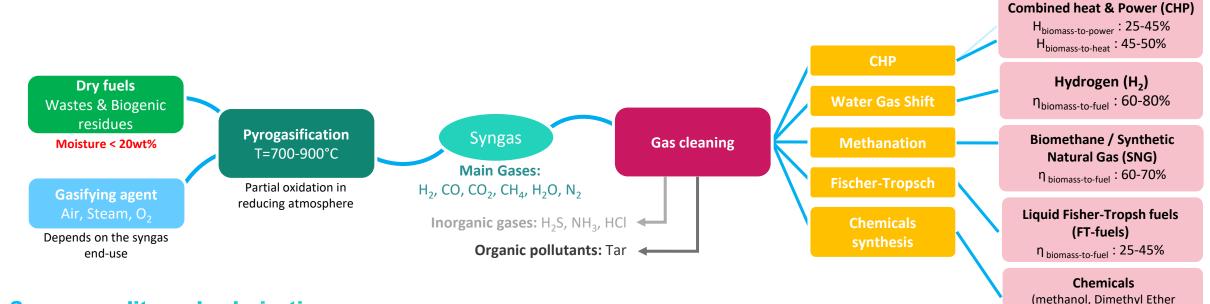
Diversification of applications downstream of pyrogasification

Marion MAHEUT, Lab CRIGEN (ENGIE R&I)

IEA Bioenergy workshop – Lyon, 19th of October 2023



Syngas produced by pyrogasification is a good chemical precursor for multiple applications

What is pyrogasification?

Syngas quality and valorization

Syngas quality depends on the feedstock type, operating conditions and the pyrogasification technology.

The syngas purification intensity depends on the targeted energy applications

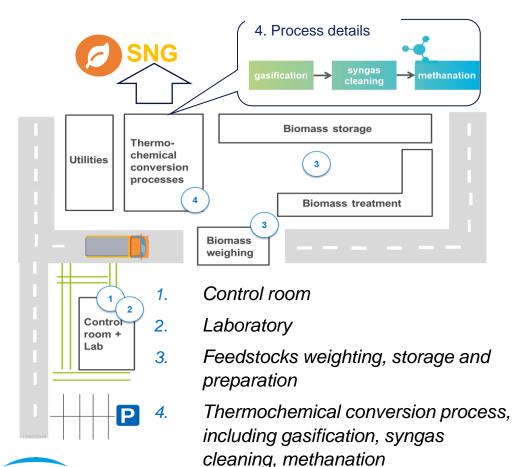
(DME), ethanol...)

Many gasification technologies are available on the market suitable for different energy applications (CHP, heat, SNG, H₂, liquid FT-fuels, chemicals)

	Capacity	Common energy applications <u>up to now</u>	e	e	
Updraft fixed bed	few 10 kW _{th} - MW _{th}	Heat / CHP applications	Production of gas with high LHV	Production of higher level of tars and higher effluents treatment required	
Downdraft fixed bed	up to few MW _{th}	Heat / CHP applications	Production of high-quality syngas (lower tar content)	Control of the input granulometry and humidity	
Single fluidized bed (bubbling or circulating)	500 kW _{th} - 50 MW _{th}	Heat / CHP applications (on-going developments for SNG, H2 production)	Handling of a variety of inputs, if "cheap" oxygen available this techno is a good candidate for SNG	Air blown demonstrated but syngas with low LHV, oxygen blown are more expensive, no steam blown at commercial scale	
Dual fluidized bed	500 kW _{th} - 100 MW _{th}	Heat, CHP, SNG (on-going development for H2, chemicals, liquid fuels)	Production of high LHV syngas (steam blown) and significant amount of methane, limited temperature	pollutants, erosion related constraints on	Test ENC dem
Direct plasma gasifier	> 50 MW _{th}	CHP applications	Production of high-quality syngas	High power consumption	
Entrained flow bed	large scale > 100 MW _{th}	Liquid FT-fuels, chemicals	Production of a high-quality syngas with high H ₂ content	Need for a finely torrefied and grounded feedstocks	
Two-stage processes (pyrolysis + gasification)	Depends on the gasification technology downstream pyrolysis	H2, liquid FT-fuels, chemicals, (depends on the gasification)	Low tar and hydrocarbons content, high H ₂ /CO ratio, possible biochar production	Moderate flexibility to feedstocks, lower conversion efficiency into final gas or liquid product when biochar is co- produced)	

engie

o-scale

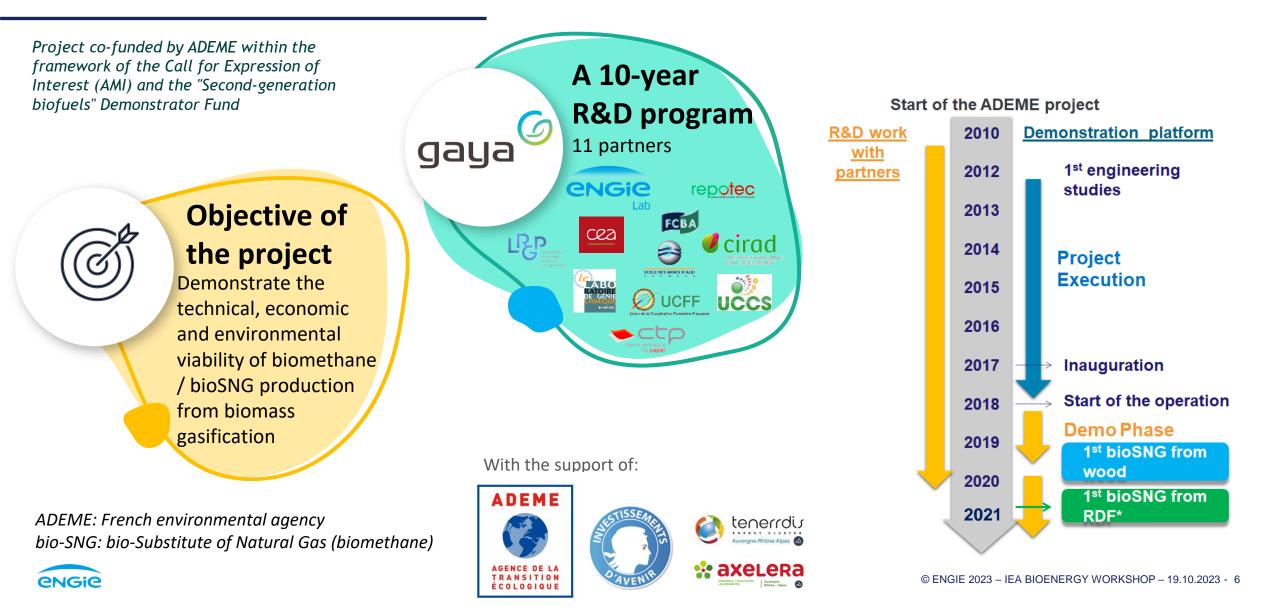

ENGIE Lab CRIGEN pyrogasification demonstration projects

ENGIE has built and still operates the GAYA demonstration plant

A cutting-edge <u>R&D</u> and <u>highly automatized</u> demonstration plant to produce bio/low carbon fuels from biomass & waste pyrogasification

Saint-Fons, in the Chemical Valley, in the south of Lyon

GAYA platform is a cutting-edge semi-industrial R&D facility...


- With more than 3000 sensors
- Highly automatized with a complete control system
- By design, modular to welcome new technologies
- The only R&D platforom covering the whole production chain

...with 3 main uses

- Research & Development
- De-risk and boost industrialization
- Communication

GAYA was an ambitious **R&D** project coordinated by **ENGIE** to produce biomethane / SNG

Thanks to the GAYA project ENGIE succeeded to develop and innovative, robust and more cost-effective production chain than the state of the art...

Technical validation of the process at demo-scale (TRL 7-8)

- > 150 tests performed
- Long duration tests in continuous mode (24h/24h)

The entire production chain has successfully been proven to be robust and <u>flexible</u> to convert several feedstock

- Innovations (> 10 patents)
- Optimization of the process

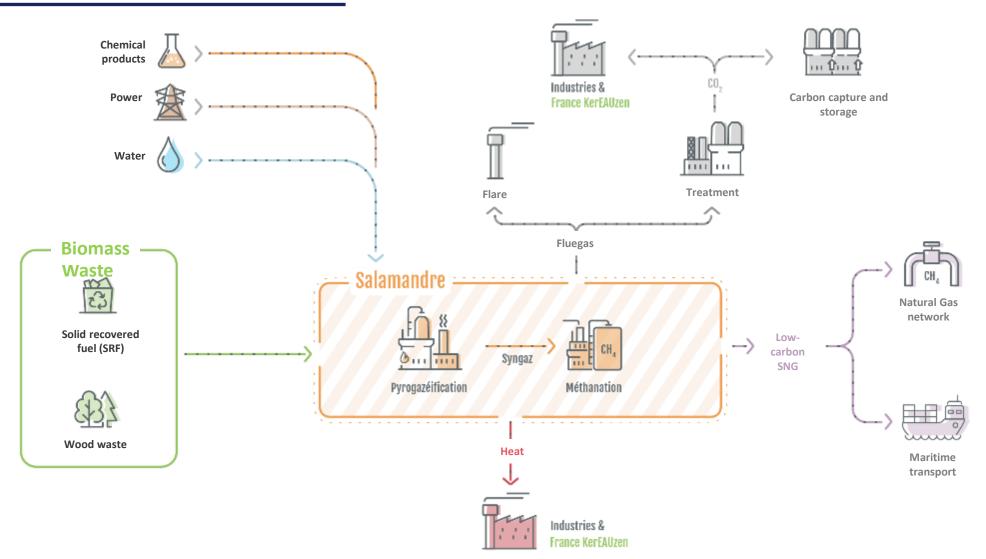
-30 % of CAPEX and -10 % to -100% on feedstocks supply costs compared to the state of the art

Environmental benefit confirmed

- Life Cycle Analysis performed
- Compliance with thresholds imposed by RED II (for heat or bio-fuels)

-86 % of GHG reduction using 2G biomethane compared to fossil fuels (RED II)

...paving the way towards the industrialization and market uptake of biomethane production from gasification



engie

Salamandre project: ENGIE's first commercial project of SNG from gasification to be installed in Le Havre

The creation of a renewable fuels hub for heavy mobility and intensive industries

GAYA platform transformation (> 2023)

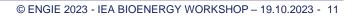
- A semi-industrial trial environment made available for start-ups / SMEs... to test, de-risk and validate innovative solutions thanks to the modular design of the GAYA platform
 - Syngas cleaning technologies
 - Catalysts
 - Syngas conversion technologies
 - SNG upgrading technologies

An experimental platform available for future research programs

- Pursue feedstock diversification, in particular waste gasification
- Study inorganic behavior in the gasifier to optimize syngas cleaning step
- Comparison of various syngas cleaning approaches at low, medium or high temperature
- Investigate production of H_2 or even H_2/CH_4 (CRIGEN patent)

Academic partnerships

Aix*Marseille



European projects

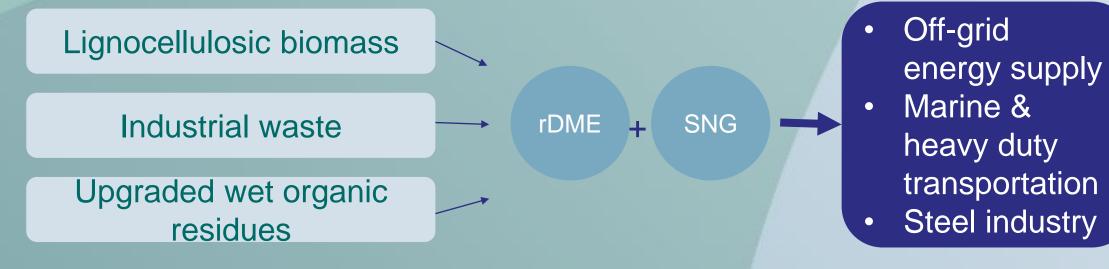
- MEASURED
- MEASURED (granted), SNG upgrading innovation, coordinated by TU Eindhoven

https://www.measured-project.eu/

• BUTTERFLY (granted), co-production of BUTTERFLY SNG and rDME, coordinated by TNO

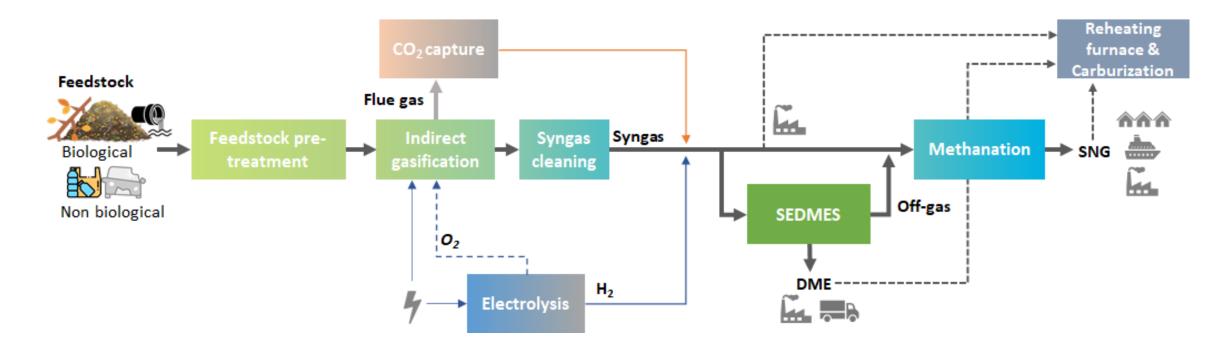
BUTTERFLY Biomass Utilized To The Extended portfolio of Renewable Fuels with Large Yields

19/10/2023 Bioenergy in a net zero future Prepared by: Marion Maheut



BUTTERFLY

The project


BUTTERFLY is a Horizon Europe Innovation Action project that aims to validate three complete different value chains from waste and residual feedstock for the production of **advanced biofuels** and **renewable fuels** (rDME and SNG, at a tuneable ratio). The application of these green fuels will be the **«hard-to-decarbonize»** sectors.

The process

Flexible co-production of rDME and SNG and maximum carbon efficiency will be achieved thanks to innovative integration of **indirect gasification**, sorption-enhanced DME synthesis (**SEDMES**) and SEDMES combination with downstream **methanation**.

The goals

- Improve biomass-to-fuel conversion efficiency by 15%
- Achieve up to 97% carbon efficiency
- Optimise the synergy of rDME and SNG production

BUTTERFLY's partners

LUT University

Thank you for your attention !

Contact

Marion MAHEUT GAYA R&D project leader ENGIE CRIGEN Biogas, Biomass & Waste Lab marion.maheut@engie.com

engie.com