WET OXIDATION TO TREAT HTL WASTEWATER

Patrick Biller, Guido Ceragioli , Lars Thomsen, Leendert Vergeynst, Williane Vieira Macêdo , Alastair James Ward, Konstantinos Anastasakis , Giulia Zoppi, Carolin Schuck

WET WASTES

1.4 b t EU

Wastewater sludge 12 m t EU **Commonality**:

Food waste 60 m t EU

Digestate from AD 190m t EU

- High availability
- Less feedstock competition
- High water content
- High inorganic content
- High P content
- High N content
- Presence of micropollutants etc
- Presence of heavy metals

HTL PILOT PLANT

- 65 L/h slurry flow rate
- 3 kg/h bio-crude production
- Subcritical region (300-350°C)
- Heat exchange >75%
- EROI ~3

HTL WASTEWATER

What to do with the water?

Temperature	PO4	NH4+	TOC	COD
300°C	4.3	372.5	20,000	50,833
325°C	2.3	635	15,700	42,250
350°C	7.6	720	20,200	51,850
Lipits ma/l				

Units mg/L

AARHUS UNIVERSITY DEPARTMENT OF BIOLOGICAL AND CHEMICAL ENGINEERING

Figure 2 - Shows composition of organic compounds in the HTL wastewater, based on functional groups. E1-E4 shows composition of processed mixed wastewater algae. E5 and E6 are based on Spirulina as feedstock to the HTL under different process conditions (Gu et al., 2019)

Green Chem., 2019, 21, 2518-2543

Figure 6. Total organic carbon and quantified carbon of the aqueous byproducts generated from HTL of food industry waste, municipal waste, and biomass grown on wastes: BF1 biomass feedstock grown on corn stover lignin residue; BF2 biomass feedstock grown on municipal waste.

DOI:10.1021

DOI:10.1021/acssuschemeng.6b02367 (45 ART) ACS Sustainable Chem. Eng.2017, 5, 2205–22142208

BIOLOGICAL TREATMENT

Results Anaerobic digestion:

- Straw+manure derived water showed no inhibition at 65% COD load
- Sludge derived water inhibition at 15% COD load
- Nitrogen aromatics in sludge water are higher and cause inhibition

Results WWTP:

No impact of heterotrophic bacteria

- >92% biodegradability of COD and organic N
- 45% higher denitrification rates with HTL-PW than with influent

Nitrifying bacteria can deal with it

- 8% nitrification inhibition in worst case (shock-load)
- No nitrification inhibition in continuous reactors

BUT: Huge load on total inlet COD (~20%)

https://doi.org/10.1016/j.biortech.2024.130559

https://doi.org/10.1016/j.jenvman.2023.119046

WET AIR OXIDATION PROCESS

WET OXIDATION

WO RESULTS

Batch

https://doi.org/10.1016/j.watres.2021.117863

VFA PRODUCTION

N IN WO

- GC-MS analysis shows fast and almost full degradation of most compound classes
- Organic-N compounds are efficiently converted to NH4
- Recovery of NH4 is attractive

<u>https://doi.org/1</u>	<u>10.1016/j.watres.2021.11786</u>	<u>3</u>
--------------------------	------------------------------------	----------

Alcohols — Aromatic compounds — Cyclic Ketones — Esters/Ether	s
Ketones N compounds NAs Organic acids	

BIOLOGICAL TREATMENT OF WO WATER

- conversion of ammonia to N-NOx inhibition
- constant v/v dilution

N N	Sample	B (mLCH₄/g COD)	Rmax (mLCH $_{\mu}$ /g COD/day)	λ (day)	R ²
	HTL	164	4.2724	9.7128	0.982121
4	300HF	154	21.9947	19.5267	0.999512
AARHUS	325HF	165	20.1613	25.4737	0.999693
DEPARTMENT	350HF	164	19.6198	27.2293	0.999648

HR MS ANALYSIS

HTL-AP- HESI (-) #140-271 RT: 4.72-5.86 AV: 132 SB: 120 0.03-1.07 NL: 7.20E8 T: FTMS - p ESI Full lock ms [100.0000-1000.0000] HTL process water (+)

HTL-AP (HESI) + #146-228 RT: 3.63-4.40 AV: 83 SB: 90 0.06-0.91 NL: 9.18E7 T: FTMS + p ESI Full lock ms [100.0000-1000.0000]

Analysis by:

Jhonattas de Carvalho Carregosa & Alberto Wisniewski Jr (PEB), Department of Chemistry, Federal University of Sergipe, Brazil

	(_)-⊦	IESI	(+)-HESI		
Samplas	Number of ions	% of ions	Number of ions	% of ions	
Samples	S/N>=3	reduction	S/N>=3	reduction	
HTL-AP	HTL-AP 2254		2833	-	
300-HF	300-HF 1927		1517	46	
300-MF	1553	31	1399	51	
300-LF	1303	42	1174	59	
325-HF	1827	19	1743	38	
325-MF	1488	488 34		44	
325-LF	1420	37	1179	58	
350-HF	1823	19	1849	35	
350-MF1	1259	44	1288	55	
350-MF2	1389	38 1656		42	
350-LF	837	63	973	66	

- Up 65 % reduction in number of ions
- Average Mw reduced from ~180 to ~170 but increase at high severities
- Appearance of new high Mw compounds

HR MS ANALYSIS

- N1 and N2 degraded
- O1N1, O1N2, O2N1 etc are more recalcitrant

Analysis by:

Jhonattas de Carvalho Carregosa & Alberto Wisniewski Jr (PEB), Department of

Chemistry, Federal University of Sergipe, Brazil

WET OXIDATION

$$ER = COD_{removed}(mol) * 435(\frac{kJ}{mol}O_2)$$

H. Debellefontaine, J.N. Foussard | Waste Management 20 (2000) 15-25

HTL-WO INTEGRATION

HTL-WO INTEGRATION

3.6 Network setup

The considered fluxes, based on the results of the batch experimental test 325°C/20min, for the exchanger network are reported in the following Table 3.7:

Table 3.7 - Initial flux subdivision based on the 325°C/20min HTL batch experiments and literature data for WO.

	Flux name	T _{in} [°C]	$T_{out} [^{\circ}C]$	$\dot{m}\left[\frac{kg}{s}\right]$	$\operatorname{Cp}^{\star}\left[\frac{kj}{kg*K}\right]$	$\dot{m}Cp^{\star}\left[\frac{kW}{K}\right]$
_		20	200	1	4.26	4.26
		200	250	1	4.54	4.54
	Slurry Heating	250	300	1	5	5.00
		300	315	1	5.5	5.50
		315	325	1	5.86	5.86
	Aqueous Phase	70	200	0.835	4.27	3.57
	Heating	200	250	0.835	4.54	3.79
		250	275	0.835	4.87	4.07
-		325	315	0.91	5.86	5.32
		315	300	0.91	5.5	4.99
	Slurry cooling	300	250	0.91	5	4.54
		250	200	0.91	4.54	4.12
		200	70	0.91	4.27	3.88
-		350	345	0.885	7.76	6.48
		345	330	0.885	6.84	5.71
	Aqueous phase	330	315	0.885	5.98	4.99
	cooling	315	300	0.885	5.50	4.59
		300	250	0.885	5.00	4.18
		250	200	0.885	4.54	3.79
		200	20	0.885	4.27	3.57

From Table 3.7 is evaluated the total heating and cooling demand:

 $\phi_{max,heatdem.} = 2141 \ kW$

 $\phi_{max, coolingdem} = 2368 \, kW$

- Modelling only found 160 KJ/mol vs theoretical 435 KJ/mol O2
- Only 55% COD removal achieved in ASPEN model vs~80% experimental
- Autothermicity confirmed in ASPEN Energy analyser

AARHUS UNIVERSITY DEPARTMENT OF BIOLOGICAL AND CHEMICAL ENGINEERING

HTL-WO INTEGRATION

- As long as HTL is not run at 350C and WO at 350C there is no heat demand for HTL
- Pumping and oxygen production are highest energy input
- Source of Oxygen very important for overall energy balance

New follow-on HORIZON EU Project <u>Objectives</u>:

- Integrate process water valorization (wetOx)
- Producing on spec jet fuel
- Carbon negative fuel production
 - valorizing all C streams
 - Sequestering C in biochar
- Autothermal HTL process
- Methanol synthesis at Foulum Power-2-X facilities

https://project-circulair.eu/

7 MARCH 2024

PATRICK BILLER 024 ASSOCIATE PROFESSOR

CARBON BALANCE

State of the art:

50% carbon lost to gas and process water

CIRCULAIR

Ambition:

>90 % carbon utilisation

~20% jet fuel yield

SUMMARY

- WO is efficient in converting HTL water phase organics
- Autothermal integrated HTL-WO is an attractive concept
- Use of CO2 for Power-2x and O2 from electrolysers looks promising
- Recovery of acetic acid and NH4 sould be investigated
- Final use of post-WO water and toxicity needs to be investigated

THANK YOU

Funded by the Horizon 2020 Framework Programme of the European Union

Circulair, funded by the European Union under GA No. 101083944

EUDP C

Sludge2Fuel,

Energiteknologiske Udviklingsog Demonstrations program (EUDP) Fund Denmark Nr. 64021-1076

REBOOT, the European Research Council (ERC) under the European Union's Horizo 2020 research and innovation program grant No.849841

