Thermo-Chemical Fractionation, a unique technology to unlock biomass

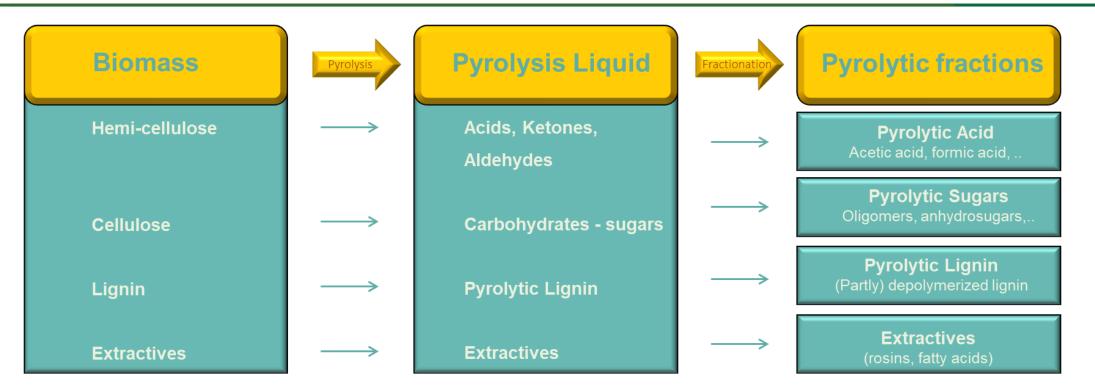
Hans Heeres, Bert van de Beld, Evert Leijenhorst

IEA Bioenergy Webinar, 09/04/2024

biomass technology group

btg

Your partner in bioenergy

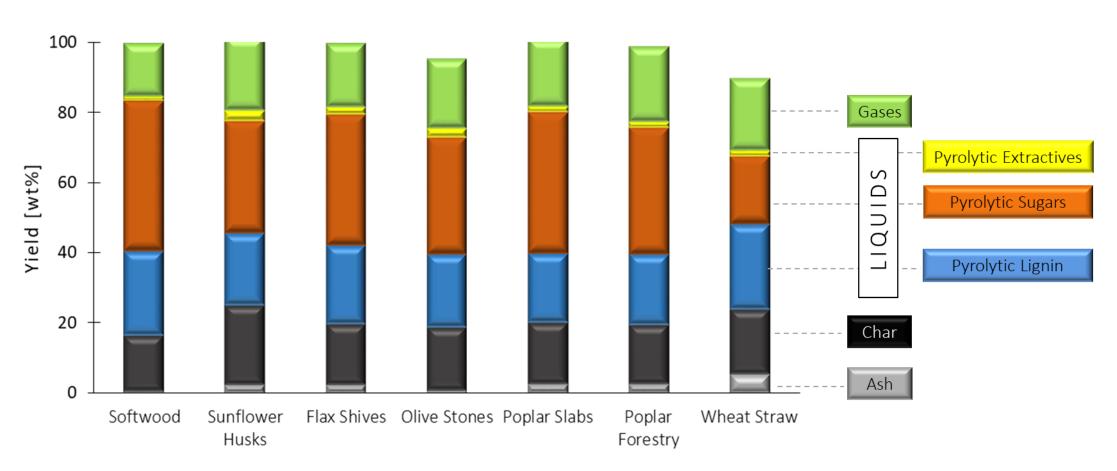

Content

Content:

- Thermo-Chemical Fractionation (TCF)
 - \circ The process
 - Properties of fractions
- The Bio4Products project (finalised)
 - Examples of the use of fractions in products
- The NewWave project
 - \circ Introduction
 - Manufacturing lines
 - $\,\circ\,$ Production of polyols

Thermo-Chemical Fractionation via Fast Pyrolysis:

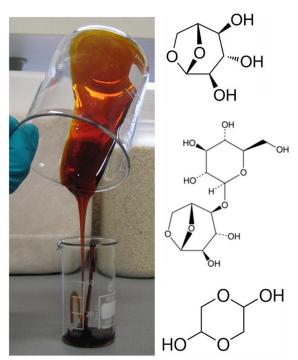
- Key biomass functionalities retained in the pyrolytic fractions;
- > Fractionation process based on liquid-liquid extraction enabling separation on basis of functionality.
- Each fraction is used directly as raw material in bio-based products or a starting point for further dedicated (electro)chemical, catalytic or biotechnological conversion.
- > No byproducts/waste: Excess fractions can be mixed back in the pyrolysis liquid for fuel application.


Fractionation of pyrolysis oil, how does this work?

- Pyrolysis oil: Acidic emulsion of depolymerized biomass
 - H_2O content of ~23 wt.%
- Separation of pyrolysis oil by extraction into :
 - Extractives, depending on BM used
 - Liquid pyrolytic lignin (25-30 wt.%)
 - Pyrolytic sugar solution (30-40 wt.%)
- Further processing yields:
 - Pyrolytic sugar syrup
 - Solid pyrolytic lignin
- At BTG the fractionation of pyrolysis oil is performed on pilot-scale
 - Developed/built in Bio4Products
 - Commissioned in Q4, 2018
 - Capacity: 3 t/d of oil processing

Fractionation of pyrolysis oil; some yields:

Yields Thermo-chemical fractionation


Fractionation of pyrolysis oil; sugars:

- Pyrolytic sugar contains:
 - Sugar monomers (e.g. levoglucosan) \rightarrow ~ 28,3%
 - Sugar oligomers (e.g. cellobiosan) → ~ 40,2%
 - Sugar polymers \rightarrow ~ 13,9%
 - Glycoaldehyde \rightarrow ~ 12,6%
 - Small amounts of phenols, acids and ketones → ~ 5%
 - Sugars are mainly cellulose (C6) derived

(Fraction: max. 40 wt.% of FPBO)

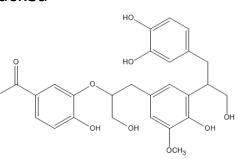
PS (UVCB):

- PPORD submitted January 2020
- CAS number PS: 2414605-13-1
- REACH number PS: 01-2120886739-29-0000
- Dossier submitted in June 2021 (1-10 t/y):

Composition of pyrolytic sugar syrup:

Levoglucosan (wt%) ¹	18,6
Glycoaldehyde (wt%) ¹	12,6
Organic acids (wt%) ¹	2,9
Ketones (wt%) ¹	1,6
Phenols (wt%) ¹	0,47
Other mono-saccharides and their anhydro-form (wt%) ¹	9,7
Di-saccharides and their anhydro-form (wt%) ¹	16,6
Tri-saccharides and their anhydro-form (wt%) ¹	14,8
Tetra-saccharides and their anhydro-form (wt%) ¹	8,8
Higher oligo-saccharides and their anhydro-form (wt%) ¹	13,9
Formaldehyde	< 0,01
Acetaldehyde	< 0,01
C/H/N	46,3/6,9/0,1
Karl Fischer H ₂ O (wt%)	8,3
Carbon residue (wt%)	22,8
Acid no. (mg KOH/g)	60,0
Acid no. (mg KOH/g)	60,0

¹: On dry base


Fractionation of pyrolysis oil; lignin:

- In pyrolysis the long lignin polymers are cracked (partly depolymerized) into:
- Phenolic monomers
- Phenolic oligomers
- Phenolic polymers
- The pyrolytic lignin is a highly viscous liquid
- Mineral free
- Relative low Mw
- Soluble in many solvents

(Fraction max.: 30 wt% of FPBO)

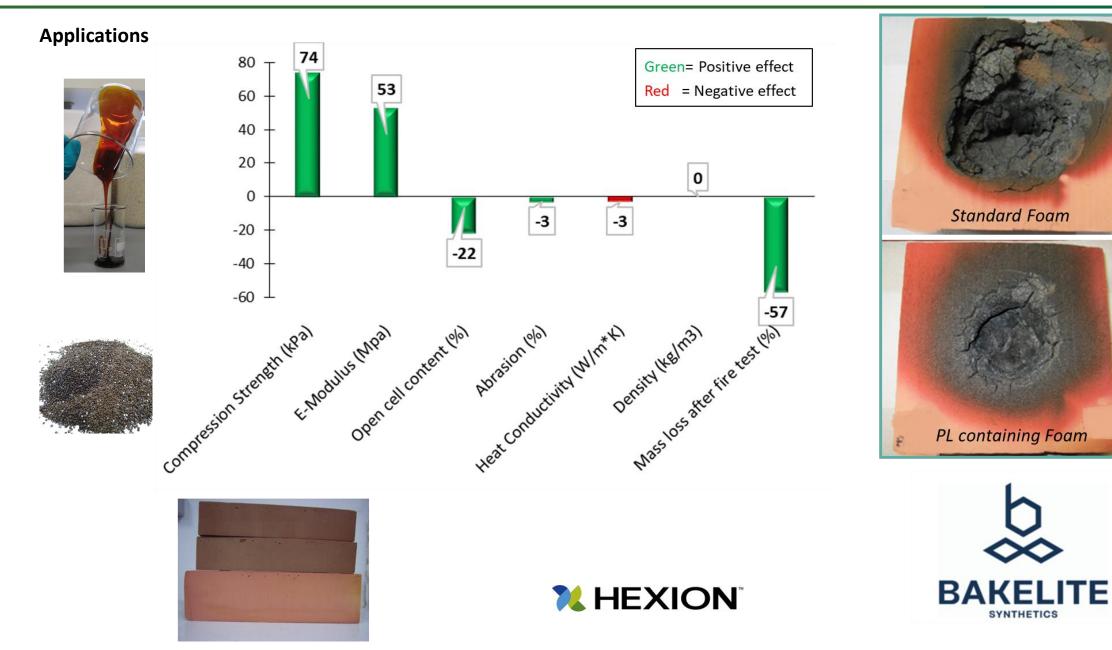
PL (UVCB):

- PPORD submitted January 2020
- CAS number PL: 2411004-28-7
- CAS number SPL: 2411004-20-9
- REACH number PL: 01-2120886738-31-0000
- Dossier submitted in June 2021 (1-10 t/y):

OH

OCH₃

Solid Pyrolytic Lignin Pyrolytic Lignin Pastilles


	Pyrolytic Lignin	Solid Pyrolytic Lignin	
C(wt%)	53.9	68.4	
H (wt%)	7.2	6.2	
N (wt%)	0.5	0	
H ₂ O (wt%)	10-15	-	
TCN (mg BuO/g) ¹	8.8	-	
TAN (mg KOH/g) ²	25.5	-	
CR (wt%) ³	30.1	37.8	
SP (°C)	-	130	
MP (°C)	-	160	
Mw (g/mole)	837 ⁴	1309 ⁴	

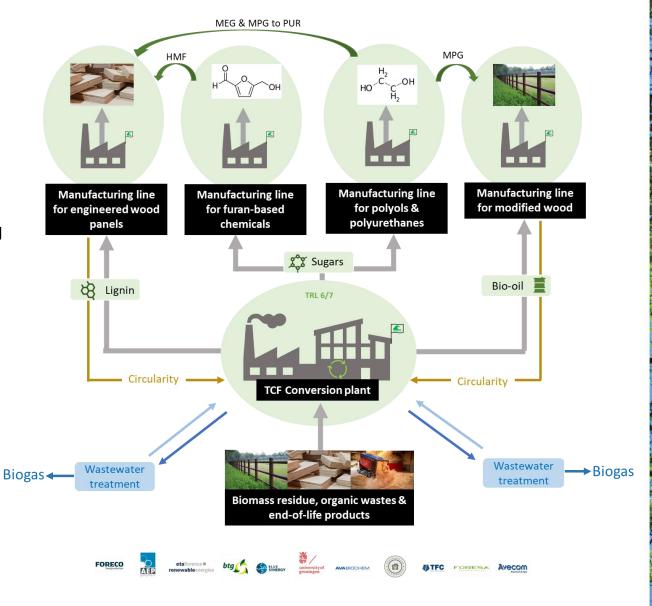
¹: TCN = Total Carbonyl Number, calculated in mg butanone/g sample. ²: TAN = Total Acid Number, calculated in mg KOH/g sample. ³: CR = Carbon Residue. ⁴: Mw Kraft lignin = 1000-8000 g/mole.

Monomeric PL mainly: Guaiacols, alkylphenols, cyclohexanols, etc.

Bio4Products applications

8

NewWave introduction

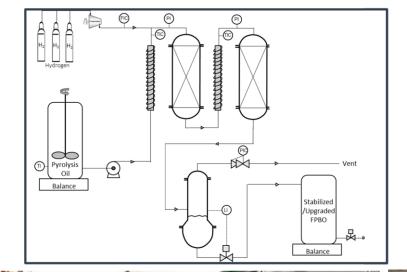


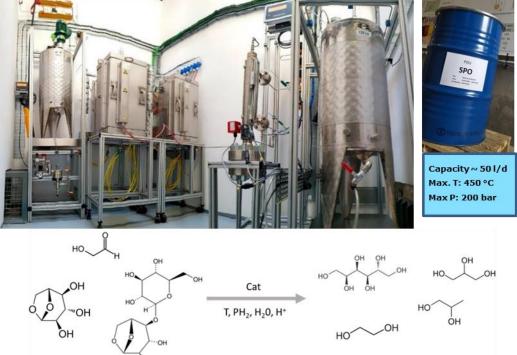
NewWave introduction

- \circ NewWave is a Horizon Europe funded project
 - Started in April 2022, running for 4y
 - NewWave will introduce sustainable raw materials in four different manufacturing lines, replacing toxic chemicals, and lowering the environmental footprint of the products
 - The products produced in the manufacturing lines will be used to enhance the sustainability in the construction industry

NewWave process scheme

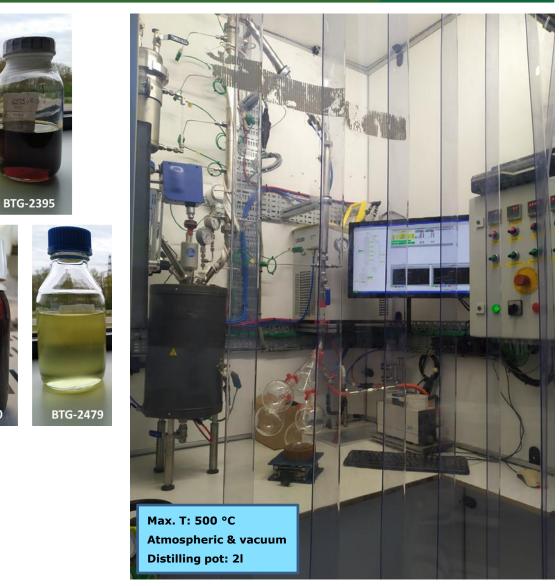
- \circ TCF \rightarrow Thermo-Chemical Fractionation (TRL: 6/7)
 - Fast pyrolysis + fractionation of pyrolysis oil into:
 - Lignin & Sugars
- $\,\circ\,$ 4 Manufacturing lines
- Interlinked manufacturing lines
- $\circ\,$ Circularity of final products
- Wastewater treatment




NewWave polyols

How are the polyols produced?

- $\circ~$ Hydrogenation performed in dedicated set-ups
 - Lab-scale hydrotreater (continuous)
 - Pilot-scale hydrotreater (continuous)
- $\circ~$ Production of polyol's performed by applying:
 - PICULA[™] catalyst
 - Elevated temperature
 - Elevated H₂ pressure
- Hydrogenation of pyrolysis oil and/or pyrolytic sugars
- Prepare samples from SPO/SPS:
 - By fractionation (to remove lignin)
 - By distillation (to remove small polyols)
- Perform analysis to determine composition
- Test polyols in PUR applications (AEP Polymers)


NewWave polyols

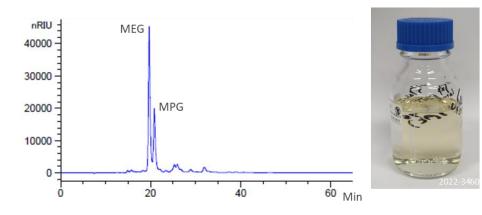
How are the polyols produced?

- $\circ~$ Separation by extraction and distillation:
 - Mixed polyols (all water-soluble polyols in SPO)
 - Dark red liquid BTG-2395
 - ~30-40 wt.% of SPO (db)
 - Large/heavy polyols
 - Thick black liquid: BTG-2410
 - Yield: ~ 65-75 wt.% after distillation
 - Light polyols
 - Light yellow liquid BTG-2479
 - Yield: ~ 25-35 wt.% after distillation

BTG-2410

Distillation unit

biomass technology group


Analysis of polyol samples

	BTG-2410	BTG-2479	BTG-2395
HPLC ¹			
MEG (wt.%)	ND	55,3	28,2
MPG (wt.%)	ND	23,3	12,8
Standard analysis			
C/H/N (wt.%)	63,1/7,8/,0,0	44,8/10,0/,0,1	46,2/8,9/0,3
Karl Fischer H_2O (wt.%)	0,6	1,2	1,1
TAN (mg KOH/g) ²	11,6	11,9	19,5
CAN (mmol/g) ³	1,9	0,6	1,6
pН	4,5	4,4	4,1
CR (wt.%) ⁴	15,6	0,0	3,8

¹: HPLC analysis: MEG = Mono ethylene glycol, MPG = Mono propylene glycol. ²: Total acid number. ³: Carbonyl number. ⁴: Carbon residue.

- Various analysis performed
- Still some unknowns on "other" polyols
 - Additional analysis required → Qualification & quantification
 - Further purification required
- Simple one-step purification was applied to increases MEG & MPG conc.
 - Recovery cleaned: 55 wt.% (db) → should be increased

MEG + MPG: 78,6 wt.% !

- Increase yield of smaller polyols by:
 - Testing of alternative in-house catalysts
 - Optimization of process conditions
- Pilot-plant runs to produce large quantities (with most promising system)
- Test polyols (all) in PUR applications (AEP polymers)

- Fast Pyrolysis is a suitable process to convert a variety of biomasses into a liquid (FPBO);
- FPBO can be an excellent raw material for developing a so-called Bio-liquids refinery covering Bioenergy,
 Biofuels and Bio-based products & chemicals;
- FPBO contains similar chemical functionalities as the original biomass;
- Fractionation of FPBO by liquid-liquid extraction yields a.o.:
 - Pyrolytic lignin
 - Pyrolytic sugars
- Fractions can be applied directly as raw material in biobased products or as raw-material in chemical processing:
 - Pyrolytic lignin in molding resins, insulation foams & wood panels
 - Pyrolytic sugars in wood modification, foundry resins, and in the production of polyols and furan-based chemicals
- Further product development ongoing in the NewWave project, please visit:

https://www.newwave-horizon.eu/

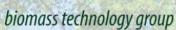
The activities described in this presentation have been obtained in two projects funded by the

European Commission. Their support is gratefully acknowledged.

Bio4Products – Grant agreement 723070 (H2020)

NewWave – Grant agreement 101058369 (Horizon EU) WewWave

<u>OUEStions</u>


Contact information

Visiting address Josink Esweg 34 7545 PN, Enschede The Netherlands

+31 (0)53 486 1186 +31 (0)53 786 1180 Postal address P.O. Box 835 7500 AV, Enschede The Netherlands

www.btgworld.com office@btgworld.com

btg

Your partner in bioenergy